

FACULTY OF ENGINEERING AND
TECHNOLOGY

MASTER IN COMPUTER ENGINEERING

PREDICTING NEXT CHARGE DATE

FOR PREPAID ELECTRICITY METERS

USING MACHINE LEARNING

Mohammad Abu El Halaweh

Supervised by:

Dr. Ismail Khater
Dr. Ahmad Alsadeh

Date: FEB-20242

MASTER THESIS

Predicting Next Charge Date for Prepaid Electricity Meters Using Machine
Learning

Birzeit University

By: Mohammad Abu El Halaweh

This thesis was successfully defended on Thursday, February 15th, 2024.

Supervisors:
Supervisor 1 Dr. Ismail M Khater

Supervisor 2 Dr. Ahmad Alsadeh

Examiners:
Examiner 1 Dr. Yazan Abu Farha

Examiner 2 Dr. Abualseoud Hanani

This Master Thesis is prepared by Mohammad Abu El Halaweh as in part fulfillment of the
degree requirements for the Master in Computer Engineering.

3

Declaration of Authorship

I, Mohammad Abu El Halaweh, declare that this thesis titled, Predicting Next Charge Date
for Prepaid Electricity Meters Using Machine Learning and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-gree at
Birzeit University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at Birzeit University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed my-self.

Signed:

Date:

4

Abstract

Electricity plays a crucial role in the development of the world economy. It is a commod-
ity that needs to be managed efficiently and effectively to ensure its availability to consumers.
Unfortunately, electricity production and distribution are complex and expensive processes.
Thus, legalizing and rationalizing its use is essential. Consequently, companies in many coun-
tries have begun installing prepaid electric meters in customers’ homes, offices, and stores,
requiring them to purchase electricity on a prepaid basis. Prepaid electricity meters have
become increasingly popular as a means of providing consumers with more control over their
electricity consumption and expenditure. However, one of the main challenges with prepaid
electricity meters is the potential for the meter balance to run out, leading to a cutoff in
electricity supply. This can result in customer dissatisfaction due to the sudden interruption
of service and its consequent effects, and sometimes it may cause serious disasters. Thus, to
mitigate this issue, customers should be alerted when their meter has a low prepaid balance,
advising them to recharge it soon. This thesis proposes machine learning-based approaches
to genuinely address this issue. We collaborated with the Jerusalem District Electricity Com-
pany (JDECO) to collect essential customer data from their prepaid systems. We used the
datasets to train various machine learning models to create the Next Charge Date Predictor
(NCDP) for customers. Our approach involved using a random forest regressor, XGBoost
regressor, linear regressor, polynomial regressor, K-Nearest Neighbors (KNN), decision tree,
and recurrent neural network (RNN) deep learning model. Remarkably, our RNN model out-
performed the others, achieving a mean absolute error (MAE) of 2.07, effectively predicting
customers’ next charge dates.

i

�Ê
	
j
�
J�ÖÏ @

�
è

ñ
	
®»ð

�
éËAª

	
¯
�
èP@X@

úÍ@

h. A

�
Jm�
�
' �
éªÊ� Aî

	
E @

�
IJ
k , ÕËAªË @ XA�

�
J
�
¯@ QK
ñ¢

�
� ú

	
¯ A

�
ÖÞ�Ag @ �PðX ZAK. QêºË@ I. ªÊ

�
K

	á�

	
J
�
®
�
K

�
éÒºmÌ'@ 	áÓ ,½Ë

	
YË .

	
Ê¾Óð Y

�
®ªÓ ZAK. QêºË@ ©K

	Pñ
�
Kð h. A

�
J
	
K @

,

	
�

CË .

	á�
ºÊî
�
D�ÒÊË AëQ

	
¯ñ
�
K

	
àAÒ

	
�Ë

�
é
�
®J.�Ó ZAK. QêºË@

�
H@X@Y« I. J
»

Q��K.
	
à@YÊJ. Ë @

	áÓ YK
YªË@ ú

	
¯

�
HA¿Qå

�
�Ë @

�
H

@YK. , ½Ë

	
YË . AêÓ@Y

	
j
�
J�@

�
é
	
JÊ
�
®«ð

�
�J.�Ó �A�

@ úÎ« ZAK. QêºË@ Z @Qå

�
� ÑîD
Ê«

	á�
ª
�
JK

�
IJ
k , ÑëQk. A

�
JÓð ÑîD

.
�
KA¾Óð ZCÒªË@ È 	PA

	
JÓ ú

	
¯ ©

	
¯YË@

YK

	QÖß.

	á�
ºÊî
�
D�ÖÏ @ YK
ð

	Q��Ë
�
éÊJ
�ñ» YK
@

	Q��Ó É¾
�
��.

�
éª

KA
�
� ©

	
¯YË@

�
é
�
®J.�Ó ZAK. QêºË@

�
H@X@Y«

�
Ij�.�

@ . ©

	
¯YË@

�
é
�
®J.�Ó ZAK. Qê»

�
H@X@Y« ©Ó

�
éJ
��

KQË @

�
HAK
Yj

�
JË @ Yg

@ , ½Ë

	
X ©Óð . ZAK. QêºÊË Ñê»Cî

�
D�@ úÎ«

�
èQ¢J
�Ë@ 	áÓ

A
	
�P ÐY« úÍ@

ø

X

ñJ
� @

	
Yë

	
à@

. Z AK. QêºË@ ©¢

�
¯ úÍ@

ø

X

ñJ
� AÜØ , Y

	
®
	
JK
 Y

�
¯ X@YªË@ YJ
�P

	
à

@ ñë ©

	
¯YË@

.
�
èQ�
¢

	
k

�
HP@ñ» I. �.��
 Y

�
¯ A

�	
K AJ
k

@ð ,½Ë

	
X 	á«

�
éÔg

.
A
	
JË @ PA

�
K
�
B@ð

�
éÓY

	
jÊË úk

.
A
	
®ÖÏ @ ¨A¢

�
®
	
KB@ 	á« ZCÒªË@

,
	

�
	
®
	
j
	
JÓ YJ
�P úÎ« ø

ñ
�
Jm�'
 èX@Y«

	
à

AK. ÉJ
ÒªË@ éJ
J.

	
�
�
K I. m.

�'

 ,

�
éÊ¾

�
�ÖÏ @ è

	
Yë 	áÓ

	
J

	
®
	
j
�
JÊË , ú

ÍA
�
JËAK. ð

è
	
Yë Ñm.

k 	áÓ ÉJ
Ê
�
®
�
JÊË ú

Í
�
B@ ÕÎª

�
JË @ úÍ@

Y
	
J
�
��

�
� A

��
Q̄£

�
ékðQ£

B@ è

	
Yë hQ��

�
®
�
K . A

�
J. K
Q

�
¯ é

	
Jm�

�
� éJ
Ê« I. m.

�'

ð

©Òm.
Ì (JDECo) �Y

�
®Ë@

�
é
	
¢
	
¯Am× ZAK. Qê»

�
é»Qå

�
� ©Ó

	
àðAª

�
JËAK. A

	
JÔ
�
¯ . XAg. É¾

�
��. ú

æ
.
Ê�Ë@ AëQ�

�
K

A
�
Kð

�
éÊ¾

�
�ÖÏ @

�
é
	
®Ê
�
J
	
jÖÏ @ ú

Í
�
B@ ÕÎª

�
JË @ h.

	
XAÖ

	
ß I. K
PY

�
JË

�
HA

	
KAJ
J. Ë @

�
HA«ñÒm.

× A
	
JÓY

	
j
�
J�@ . Ñî

ECÔ« 	áÓ

�
éJ
�A�

B@ ZCÒªË@

�
HA

	
KAJ
K.

ÉK
XñÓð , random forest ÉK
XñÓ Ð@Y
	
j
�
J�@ A

	
J
�
J
�
®K
Q£

�
I

	
JÒ

	
�
�
� . ZCÒªÊË

�
éJ.k. @ñË@

	áj
�
�Ë@ t�'
P@ñ

�
JK.

ñJ.

	
�
�
JÊË

ÉK
XñÓð , polynomial regressor ÉK
XñÓð , linear regressor ÉK
XñÓð , XGBoost h. PY
�
JË @ 	QK

	Qª
�
K

,
�
I

	
¯B É¾

�
��. . recurrent neural network (RNN) ÉK
XñÓð , decision tree ÉK
XñÓð , (KNN)

�
éJ
ËAª

	
®K.

AJ.
	
�
�
K ø

	
YË@ 2.07 èPY

�
¯ (MAE) ¡�ñ

�
JÓ

�
�Ê¢Ó

A¢

	
k

�
�
�
®k

�
IJ
k , Z@X

@ É

	
�
	
¯

@ RNN ÉK
XñÓ Qê

	
£

@

	á�
ºÊî
�
D�ÒÊË

�
éJ.k. @ñË@

	áj
�
�Ë@ t�'
P@ñ

�
JË

ii

Contents

English Abstract i

Arabic Abstract ii

Table of Contents iii

List of Figures v

List of Tables vii

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 3
1.2 Research Questions . 4
1.3 Thesis Contribution . 4
1.4 Formal Definition of the Problem . 5

1.4.1 Problem Statement . 5
1.4.2 Significance of the Problem . 6
1.4.3 Problem Constraints . 6
1.4.4 Scope of the Study . 6

1.5 Thesis Organization . 7

2 Background and Related Work 8
2.1 Background . 8

2.1.1 JDECo Company . 8
2.1.2 Prepaid Meters Background . 9
2.1.3 Machine Learning Background . 9

iii

2.2 Literature Review . 20

3 Methodology and Design 25
3.1 Challenges . 28
3.2 Dataset and Data Processing . 29

3.2.1 Data Collection . 29
3.2.2 Data Privacy and Protection . 30
3.2.3 Target Feature Creation . 31
3.2.4 Data Preprocessing . 32

3.3 Model Implementation and Selection . 43
3.3.1 Selection of Tools and Environment . 44
3.3.2 Non Machine Learning Approach . 45
3.3.3 Classical Machine Learning Algorithms 46
3.3.4 Deep Learning: Emphasizing Recurrent Neural Networks 53

3.4 Evaluation of Prediction Models using the Differential Penalty Score (DPS) . 70
3.4.1 Purpose of the DPS Metric . 70
3.4.2 DPS Formula . 70
3.4.3 Comparison of Model Performances . 71

4 Analysis of result and Discussion 72

5 Conclusion 75
5.1 Future Work . 76

iv

List of Figures

1.1 Thesis structure . 7

2.1 The comparison between RNN and FFNN [1]. 13
2.2 A diagram for a one-unit recurrent neural network (RNN). From bottom to

top : input state, hidden state, output state. U, V, W are the weights of the
network. Compressed diagram on the left and the unfold version of it on the
right [2]. 13

2.3 Most common activation functions for RNN . 15

3.1 Building ML steps . 27
3.2 Histogram for payment amount feature . 33
3.3 Histogram distribution for days to recharge . 34
3.4 Highest/Least 10 facilities average recharge days 35
3.5 Facilities recharge days grouped . 35
3.6 Highest/Least 10 area’s average recharge days 36
3.7 Mean days over months . 37
3.8 Heatmap feature correlation for the charges dataset 39
3.9 MAE for classical algorithms on raw charges dataset and different records count 47
3.10 MAE for different features selected by SelectKBest 48
3.11 Feature importance following the integration of service-related features 49
3.12 Classical ML MAE results on various features set 52
3.13 Classical machine learning MAE comparing selecting single governorate in

training VS all governorates . 53
3.14 RNN architecture after hyperparameters optimization 56
3.15 MAE performance of RNN For shuffled data over different record count on

raw features . 59
3.16 RNN performance for different features set . 62

v

3.17 RNN window size of 3 demonstration . 66
3.18 MAE RNN performance for different window size 67

4.1 RNN VS classical machine learning algorithms performance 74

vi

List of Tables

2.1 Overview of meter types and charging mechanisms 10
2.2 Metrics and formulas . 17
2.3 Literature review summary - Part 1 . 21
2.4 Literature review summary - Part 2 . 22

3.1 Selected features from the charging dataset . 29
3.2 Features within the service information dataset 30
3.3 Features within the facility dataset . 30
3.4 Sample of charges dataset (raw dataset) records/features 30
3.5 Demonstration of target feature . 31
3.6 Statistical table for payment amount feature . 32
3.7 Target feature statistics . 34
3.8 Null value analysis of the dataset columns . 41
3.9 Classical ML algorithms results on raw dataset 46
3.10 MAE results for classical ML on various features sets 51
3.11 MAE performance for RNN LSTM after merging service data and feature

engineering . 60
3.12 Impact of PCA components on MAE value . 63
3.13 Comparison of MAE values for different loss functions 63
3.14 RNN performance for different activation functions, target feature scaled . . . 64
3.15 RNN performance for different activation functions, target feature raw form

(not scaled) . 64
3.16 Customer charges before and after padding for window size 3 65
3.17 Comparison of Model Performance: Segregated vs. Aggregated Training . . . 68
3.18 Comparison of DPS across different predictive models. 71

vii

List of Abbreviations
AI Artificial Intelligence

ANN Artificial Neural Network

ANOVA Analysis of Variance

CSV Comma-separated Values

DT Decision Tree

GRU Gated Recurrent Units

KNN K-Nearest Neighbors

LSTM Long Short Term Memory

MAE Mean Absolute Error

ML Machine Learning

MSE Mean Squared Error

NCDP Next Charge Date Predictor

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

STS Standard Transfer Specification

SVM Support Vector Machine

XGB eXtreme Gradient Boosting

viii

Chapter 1

Introduction

Contents
1.1 Motivation . 3

1.2 Research Questions . 4

1.3 Thesis Contribution . 4

1.4 Formal Definition of the Problem . 5

1.4.1 Problem Statement . 5

1.4.2 Significance of the Problem . 6

1.4.3 Problem Constraints . 6

1.4.4 Scope of the Study . 6

1.5 Thesis Organization . 7

In the modern world, electricity has become an indispensable part of our daily lives.
From lighting up our homes and workplaces to powering the electronic devices that we use
for communication, entertainment, and work, electricity has transformed the way we live,
work, and play. The availability and reliability of electricity have significantly enhanced the
quality of life, enabling people to enjoy a range of comforts and conveniences that were once
unimaginable. It has become so deeply ingrained in our way of life that it is hard to imagine
a world without it. It has also spurred innovation and technological advancements in various
sectors such as healthcare, education, transportation, and agriculture, to name a few, yet
around 1.2 billion individuals globally lack access to it [3].

1

Electricity companies face numerous challenges in their operations, including the issue of
non-compliance by their customers in paying bills or paying them on time. This problem not
only creates financial burdens for these companies but also affects their ability to generate
and distribute electricity efficiently. According to a report by the National Energy Assis-
tance, the non-payment of electricity bills by consumers is a significant problem in developing
countries, and during the pandemic of coronavirus, the amount of unpaid bills has doubled
to over $27 billion [4] and over $40 billion for different utility services [5]. To tackle this issue,
many electricity companies have turned to the installation of prepaid meters as a solution
which has grown increasingly popular in recent years [6]. Prepaid meters manage consumers
to pay for electricity before they consume it, thereby avoiding the accumulation of unpaid
bills. The benefits of installing prepaid meters push many countries to install prepaid me-
ters as a solution for unpaid bills, for example, Britain extending their use to utility services
such as electricity, gas, and water, with over 31 million meters installed by the end of 2022 [7].

The increasing demand for prepaid meters among customers also has some problems
that users face, and the most important of these problems is the constant need to charge the
electricity meter to ensure the continuity of the electricity, this issue has made predicting
the next charge date a vital issue. The success of prepaid systems is dependent on several
factors, where customer satisfaction and acceptance are crucial factors. Machine learning
has emerged as a promising technology for predicting consumer behavior, and interest in
this field has been rapidly growing. Researchers in various fields, including business admin-
istration, have been applying machine learning to prediction problems. In recent years, deep
learning algorithms, including recurrent neural networks (RNNs), have shown remarkable
performance in various prediction tasks [8]. The domain of customer behavior is an ideal
area for applying machine learning for prediction purposes [9].

Existing works of literature have made extended studies to understand consumer be-
havior and his online purchasing patterns to build a model that can predict their actions
based on their behaviors and actions [10] [11]. In contrast to online purchasing, the prepaid
environment provides new opportunities to predict customer behavior through the use of
machine learning, where the customer charging patterns can be tracked and various fea-
tures can be extracted to predict customer charges behavior. Customer charges records are
sequential records that contain historical data of each charge which could be analyzed to
perform prediction tasks in machine learning. Various frameworks have been proposed to

2

predict consumer behavior using machine learning, such as Bayesian models [12], logistic
regression models [13], XGBClassifier [14], and game theory-based approach [15].

1.1 Motivation

The demand for prepaid electricity meters is high as a solution to the lack of commitment of
customers to pay their bills on time, or some of them fail to pay them. Because of this, the
increasing demand highlights the urgent need for logistical features and facilities for prepaid
meter customers to enhance their service experience.

One of the major challenges of prepaid meters is that they are programmed to relay
off the power when its balance approaches zero, this is typically what all prepaid systems
do. In telecom, internet service providers (ISP), and other service companies, the credit
for a customer is registered and controlled in the companies’ servers, therefore the company
can read and alert the user for low credit before it expires. However, for electricity meters,
the balance is registered and controlled inside the meter itself. Consequently, electricity
distribution company could not read and alert the customer for low credit unless the customer
manually checks his/her meter balance. Hence, when meter balance expires, the electricity
will cut off, which could happen at any time, in the morning, evening, at work time, or while
traveling. This results in the dissatisfaction of prepaid meter customers with the company’s
service and often leads to complaints against the company.

The current approach for most prepaid meters is to make a beep sound or a red light [16]
when its balance reaches about 30 to 10 kilowatts. Unfortunately, this method has led to
dissatisfaction among customers due to the difficulty in periodically checking the meter [17].
Furthermore, in some cases, there may be a physical distance between the meter and the
customer, resulting in difficulty in hearing the beep sound of the meter. Consequently, con-
sumers may come close to running out of electricity, leading to inconvenience and disruption
in their daily lives.

Unlike online purchasing, customer behavior in a prepaid environment has not been ex-
tensively explored, especially in machine learning techniques, therefore, there is a need to
explore the effectiveness of using machine learning to build a model that can predict prepaid
charges period for customer in prepaid electricity. Therefore, the aim of this study is to
explore the potential of using machine-learning algorithms to predict the next charge date
since machine learning can learn patterns and relationships from historical data and use

3

them to make predictions.

Predicting customer behavior in prepaid environments provides new opportunities for
machine learning, as charging patterns can be tracked and different features can be extracted
and used to predict customer charging behavior. However, the results of this study will have
important practical implications for electricity and prepaid service companies, as these results
can help companies improve their services provided to prepaid customers and increase their
satisfaction and retention.

1.2 Research Questions

After we talked comprehensively about the introduction of the research and the motivation
for doing this research, we will now touch on the concrete objectives of this study. The
essence of this thesis lies in answering the following research questions, as these questions
serve as a guiding beacon for us to reach the ultimate goal of developing an efficient and
accurate neural network model to predict the next charging date of electricity meters:

• How machine learning can be leveraged to build a predictive model for prepaid meters?

• How the historical usage patterns analytics can be used to identify trends in usage and
determine when customers are likely to need their meters recharged?

• Which of the used machine learning algorithms is the best for building a predictive
model for prepaid systems?

• How does the neural network model’s performance compare to traditional machine
learning models for the sequential data of customers’ charging behavior?

1.3 Thesis Contribution

In this thesis, we conducted a comprehensive exploration of employing machine learning and
deep learning tools to address the challenges faced by electricity companies for installing
prepaid electricity meters. We employed a variety of machine learning algorithms, with
a special emphasis on deep learning, aiming to identify the most effective strategies for
understanding and predicting customer behavior.

4

We carried out analyses of customer behaviors and the patterns of their meter recharging
activities and historical usage, extending our analyses to investigate connections related to
the geographical locations of customers and the behavior of residential areas. We found links
and behaviors that lead to improved prediction levels.

This study advances the application of machine learning and deep learning in forecasting
the behavior of prepaid electricity meter customers, pinpointing a research gap in existing
literature. Unlike most studies focusing on the use of IoT and sensor data for energy pre-
dictions, our research capitalizes on customer behavior and meter recharge history. This
approach not only addresses a critical void in current studies but also introduces a fresh per-
spective on optimizing energy resource management through sophisticated analytical tech-
niques. Consequently, our work provides valuable insights for improving the efficiency and
dependability of prepaid electricity services.

Overall, this research will add to the growing scientific research that concerns predicting
customer behavior using various machine learning techniques. It will also offer practical
implications for electricity companies and researchers interested in customer services. Future
research in this field may benefit from its findings, which can aid in the development of
machine learning algorithms for the prepaid environment.

1.4 Formal Definition of the Problem

This thesis examines the major challenge in the energy sector, which specifically revolves
around the management of prepaid electricity meters. The central problem is that the
subscriber or the company does not know the balance of the meter due to the nature of the
issue, which causes difficulty in anticipating the next charging date for these meters, which
is a complicated process due to various influencing factors.

1.4.1 Problem Statement

The primary research question this thesis aims to address is: Given a set of historical charging
data for prepaid electricity customers, can we accurately predict the next charge date?

We can define the problem in a formal way as follows:

γ = f(x1, x2, x3, . . . , xn) (1.1)

Each Xi represents a specific attribute like payment amount (paymentAMT), previous

5

charging date (previousChargingDate), kW Amount (KWAmount), kW total price (KW-
TotalPrice), debt taken (debtTaken), VAT taken (VATTaken), total fixed for last days
(totalFixedForLastDays), total miscellaneous charges (totalMisc), days since last charge
(daysSinceLastCharge), payment date (paymentDate), customer number (customerNO). The
task is to predict a continuous target variable Y, representing the difference in days to the
next charge.

1.4.2 Significance of the Problem

The accurate prediction of the next charge date for prepaid electricity meters is of consid-
erable significance. For electricity companies, these predictions can enhance resource man-
agement, improve demand forecasting, and foster proactive customer engagement strategies.
For the customers, these predictions can aid in prevent sudden service cut off due to prepaid
meter credit, and contribute towards more efficient budget management.

1.4.3 Problem Constraints

The main challenges of this problem involve the precision of past charging data, the incon-
sistency in electricity usage behaviors, and the resilience and reliability of the prediction
model. Additional possible impediments could stem from volatile tariff rates, shifts in cus-
tomer behavior, or external elements like weather conditions, all of which may not always
be accurately foreseen

1.4.4 Scope of the Study

This study is primarily focused on developing a predictive model for prepaid electricity meter
recharge dates using historical customer data. The research will be confined to the set of
features provided, aiming to establish a reliable predictive model to anticipate the number
of days until the next meter recharge.

Subsequent chapters will describe the methodology used, which includes the process of
data collection and analysis, selection of predictive modeling techniques, and evaluation
metrics for model performance

6

Figure 1.1: Thesis structure

1.5 Thesis Organization

This thesis contains five chapters, chapter 1 is an introduction and related background
knowledge, followed by motivation and contribution, chapter 2 is Background and Literature
Review, chapter 3 is an introduction contains methodology and system design, chapter 4 is
analysis of results, chapter 5 is the conclusion. The chapters of the thesis are organized as
Figure1.1

7

Chapter 2

Background and Related Work

Contents
2.1 Background . 8

2.1.1 JDECo Company . 8

2.1.2 Prepaid Meters Background . 9

2.1.3 Machine Learning Background . 9

2.2 Literature Review . 20

2.1 Background

2.1.1 JDECo Company

The Jerusalem District Electricity Company (JDECO) is a Palestinian electricity distribution
company that was established in 1956. It holds the exclusive rights to supply electricity to
consumers in the districts of East Jerusalem, Bethlehem, Ramallah, and Jericho [18]. While
JDECO doesn’t operate its own power stations, it purchases over 95% of its electricity from
the Israel Electric Corporation (IEC) and the remaining portion from the Jordan Electric
Power Company (JEPCO) for use in the Jericho district. The company serves electricity for
more than 300 thousand customers and its concession area currently covers approximately
25% of the area of the West Bank, equivalent to 366 square kilometers, distributed as follows:

• Jerusalem area: It includes 47 villages and towns and covers an area of 82 square
kilometers (not including, of course, occupied Jerusalem in 1948)

8

• Ramallah area: It includes 72 villages and towns and covers an area of 174 square
kilometers

• Bethlehem area: It includes 43 villages and towns and covers an area of 80 square
kilometers

• Jericho: It includes 7 places and covers an area of 30 square kilometers

2.1.2 Prepaid Meters Background

There are several types of prepaid meters that are used by service companies, especially
electricity companies. These types differ in terms of manufacturing and charging mechanism.
One of the ways is to use smart cards to charge the meters, where the subscriber goes to the
company or its authorized agents and a special program affiliated with the company that
manufactures the meter charges this card and writes on it the current shipment information,
then the subscriber inserts this card into the special meter to unload the new charge in
it [19].

Another way to charge the meter is by using Standard Transfer Specification (STS)
token [20]. To charge the meter using token, the customer purchases an encrypted token
with 20 digits from the company, where this token works only for that meter. Then, the
customer enters the token to the meter by an electronic keypad. Overall, the various types
of prepaid meters share the same objective, which is to allow customers to purchase credit
from the company or distributors and use that balance to power their facilities. Once the
balance is out, meters will cut off the electricity supply until a new charge is made, ensuring
that subscribers only use what they have paid for.

Prepaid Meters Types

Table 2.1 represents several prepaid meter types that are used in the electricity company,
which provided us with the data set to carry out this thesis. As the dataset contains in-
formation for shipments of several types and systems from these meters mentioned in the
table

2.1.3 Machine Learning Background

Machine learning (ML) is a branch of artificial intelligence (AI), it empowers computer
systems to learn from data and iteratively improve their performance without being explicitly

9

Meter Type Meter Image Charging Mechanism

Holley Meter (V1 + V2) [21] Smart Card

Holley Meter 3 [21] STS Code

Hexing Meter [22] STS Code

Conlog Meter [23] STS Code

Table 2.1: Overview of meter types and charging mechanisms

programmed. This transformative technology has revolutionized various industries, ranging
from finance and healthcare to transportation and gaming, and its impact is set to grow in
the coming years.

The roots of machine learning go back to statistics and computational algorithms, and
the rise in it can be attributed to the availability of huge amounts of different types of data,
powerful computing systems, and breakthroughs in algorithms and technologies that made
their implementing a reality. This has led to a leap in the development of technology and
deployment of machine learning models, from simple linear regression and decision trees to
sophisticated deep neural networks and reinforcement learning. These models can perform
a wide range of tasks, including image and speech recognition, natural language processing
and defect detection, and predicting such things as market prices and customer behavior.

Machine learning has been instrumental in fraud detection, risk management, and port-
folio optimization in the financial industry [24]. In healthcare, machine learning models have
shown promising results in disease diagnosis and drug discovery [25]. Machine learning has
also changed the landscape of social media, enabling personalized content recommendation
and targeted ads [26].

10

Machine Learning Algorithms

Machine learning nowadays are used extensively in our world. Different Machine learning
algorithms continually being changing and expanding in the field. Each algorithm has unique
strengths and weaknesses that must be carefully considered before use.

For classification tasks, supervised algorithms such as Decision Trees, Naive Bayes, K-
Nearest Neighbors, and Support Vector Machines are popular. These algorithms identify
patterns in data and use decision boundaries to classify new data points. They are trained on
pre-prepared data that includes all categories and classes needed for classification. Regression
tasks require different algorithms, such as linear regression, and polynomial regression. These
algorithms analyze data using statistical models to predict future outcomes. They can be
supervised or unsupervised, depending on the task at hand. They are considered supervised
when used to predict a continuous output variable and unsupervised when used for clustering
or dimensionality reduction.

There are some algorithms that can be used for both cases of classification or prediction.
Where there is an overlap in these algorithms that make them able to take on such tasks.
An example of these algorithms is Recurrent Neural Network.

So, it is important to understand the problem domain, analyze and understand the
characteristics of the data for the problem in order to correctly choose an algorithm to build
an appropriate model.

Artificial Neural Network

The idea of artificial neural networks is an idea inspired by the way the human mind works.
Where neural networks consist of several layers, usually known as the data input layer, the
hidden layer, and the output layer. Each layer contains nodes, so that each node contains
numbers that represent its weight. These numbers are calculated during the learning process
Nodes are connected to each other. The value of the nodes passes through the activation
function, and it determines whether the result of the next node will be activated or not [27].

Recurrent Neural Network

Recurrent neural networks (RNN) are a type of artificial neural network (ANN) that are
characterized by having cycles or temporal links. Recurrent neural networks were built in
the late eighties 1986 by Jeffrey Hinton and David Rummelhart, who laid the foundation
stone for this technology. Some modifications and updates were added to recurrent neural

11

networks to overcome some of the problems they were facing. One of the most common
problems encountered by recurrent neural networks is the vanishing gradient problem. The
problem of vanishing gradient occurs when the values of the error derivatives (gradients)
of the deep parameters in the network become too small during the training process. As a
result, the update that these parameters receive is very minimal, resulting in slow learning
or a complete learning halt. To overcome this problem, Sebastian Hochreiter and Jürgen
Schmidhuber proposed a solution to in 1997, by creating what is now known as LSTM [28].
Gated Recurrent Unit (GRU) were developed in 2014 by Kiyojiro Miyazawa, John Scholek,
and Felix Gibsat [29], and are a simplification of the LSTM model.

Recurrent neural networks rely on short-term memory to represent temporal and sequen-
tial information. At each time step, new information is entered while preserving information
from the previous time steps. The hidden state of the network is updated as each new
element of the sequence is processed [30]. This allows the network to learn the long-term
dependencies between the different elements in the sequence. The main goal of RNN is to
learn and process long- and short-term data sequences. It is a type of artificial neural net-
work that features feedback loops, allowing information to be stored across time steps during
training and prediction. RNN is designed to handle problems with a temporal dimension,
such as sequence prediction, text and speech recognition, and real-time video analysis.

In deep learning problems, data may be composed of long sequences of inputs and outputs.
Recurrent neural networks process these sequences by holding a memory of past states and
combining it with current inputs to provide contextual knowledge of the data. There is
a difference between RNN and other NN, for example, in Feedforward Neural Networks
(FFNN), it flows in a single direction, from the input layer through hidden layers (if any)
to the output layer [31]. There are no cycles or loops in the connections between the layers,
which distinguishes it from recurrent neural networks.

Activation Functions for RNN An activation function determines if a neuron should be
activated, essentially deciding the significance of the neuron’s input to the network for mak-
ing predictions through basic mathematical operations [32]. The purpose of the activation
function is to generate an output based on a collection of input values provided to a node
(or layer). RNNs commonly employ several activation functions to introduce non-linearity
into the model and help with learning complex patterns in the data. Figure2.3 shows some
of the most common activation functions for RNNs.

12

Figure 2.1: The comparison between RNN and FFNN [1].

Figure 2.2: A diagram for a one-unit recurrent neural network (RNN). From bottom to top :
input state, hidden state, output state. U, V, W are the weights of the network. Compressed
diagram on the left and the unfold version of it on the right [2].

13

Sigmoid (logistic) function
Equation:

f(x) = 1

(1 + e−x) (2.1)

Usage: The sigmoid function maps input values to the range (0,1), making it particu-
larly useful for binary classification problems, output probabilities, or as a gate mechanism
in more advanced RNN architectures like LSTMs and GRUs.

Hyperbolic tangent (tanh) function
Equation:

f(x) = ex − e−x
ex + e−x (2.2)

Usage: The tanh function maps input values to the range (−1,1), providing a better
balance of positive and negative values. This makes it a popular choice for hidden layer
activation functions in RNNs as it helps with gradient flow and mitigates the vanishing
gradient problem to some extent.

Rectified Linear Unit (ReLU) function
Equation:

f(x) =max(0, x) (2.3)

Usage: The ReLU function is less computationally expensive and mitigates the vanishing
gradient problem effectively. However, it can sometimes result in "dead neurons" in RNNs
due to its zero gradient for negative inputs. It is used in RNNs when computational efficiency
is prioritized and the risk of dead neurons is deemed acceptable.

SoftPlus function
Equation:

f(x) = log(1 + ex) (2.4)

Usage: Softplus is used as an activation function in various types of neural networks,
including feedforward, convolutional, and (RNNs). Its smooth nature makes it particularly
useful in scenarios where a non-linear, but smooth gradient is beneficial.

Linear function
Equation:

f(x) = x (2.5)

14

Figure 2.3: Most common activation functions for RNN

Usage: The usage of Linear activation function is when the output is continuous. Typ-
ically used for regression problems.

Each activation function has its advantages and limitations, and the choice depends
on the specific problem and requirements of the RNN architecture. Usually for regression
problem, RNN may use in its hidden layers ReLU or tanh and leaving the final output layer
without activation function, while for the classification problems, the final output layer of the
neural network should use either sigmoid for binary classification, or softmax for Multi-class
classification.

Layer Types for RNN
RNN have different types of layers. Each layer differs in its development and the way of

work. The following RNN layers are the common used layers:

• SimpleRNN: Simple RNN is a fully connected RNN which suits for short sequences.
One of the problem that SimpleRNN has is gradient vanishing problems, where the
gradient become relatively small which affect changing the weights values

• LSTM: LSTM is a Long Short Term Memory layer type, where it is a complex type
of layer for RNN. LSTM has a memory in it cells allow it to retain information from

15

long sequences and short steps

• GRU: GRU is a Gated Recurrent Units, which is similar to LSTM, but simpler. Usually
used for less complex problems or smaller datasets. GRU usually needs less computa-
tional compared to LSTM, and faster to train in some cases. Both GRU and LSTM
are developed to solve the gradient vanishing problem that SimpleRNN has

Metrics for Machine Learning
Performance metrics, also known as error measures, play a crucial role in assessing models

across various domains. A performance metric can be described as a logical and mathematical
structure designed to evaluate the closeness of actual outcomes to their expected or predicted
values for a certain model [33]. In another word, metrics are used to show how well the model
is.

There are various types of metrics that could be used for different types of models and
problems, and each metric has its own mathematical equations and its value reflects the
evaluation differently. Table2.2 shows most common metrics for both classification and
regression tasks and the formula for each

Classical Machine Learning Algorithms

There is a wide array of algorithms available for creating models that address various types
of problems, including regression and classification issues. Numerous research papers have
explored and utilized these algorithms, contributing to the development and refinement of
their methodologies. In the following section, we will provide a brief overview of the most
significant algorithms that have been employed in other research papers to solve diverse
problems.

Linear Regression
Linear regression is one of the oldest and most straightforward machine learning algo-

rithms, serving as a foundation for understanding the behavior and relationship between a
dependent variable and one or more independent variables. At its core, linear regression
models the relationship by fitting a linear equation to observed data. The equation for a
simple linear regression, which involves a single independent variable, is y = β0 + β1x + ϵ,
where y is the dependent variable, x is the independent variable, β0 is the y-intercept, β1 is
the slope of the line, and ϵ represents the error term [34]. The goal of the algorithm is to

16

Metric Task Description Formula Is
Higher
Value
Better

Accuracy Classification Proportion of correctly
classified instances

TP+TN
TP+FP+TN+FN Yes

Precision Proportion of true posi-
tive predictions out of all
positive predictions

TP
TP+FP Yes

F1 Score Harmonic mean of preci-
sion and recall, providing
a balanced measure be-
tween them

2⋅(Precision⋅Recall)
Precision+Recall Yes

Mean Ab-
solute Error
(MAE)

Regression Average of the absolute
differences between pre-
dicted and actual values

1
n ∑

n
j=1 ∣yi − xi∣ No

Mean
Squared Er-
ror (MSE)

Average of the squared
differences between pre-
dicted and actual values

1
n ∑

n
j=1 e

2
j No

Root Mean
Squared Er-
ror (RMSE)

Standard deviation of
the prediction errors

√
1
n ∑

n
j=1 e

2
j No

Table 2.2: Metrics and formulas

find the best-fitting line through the data points that minimizes the sum of the squared dif-
ferences between the observed values and the values predicted by the line, a method known
as Ordinary Least Squares (OLS). Linear regression assumes a linear relationship between
the dependent and independent variables, which can be a limitation in real-world scenarios
where complex, nonlinear relationships exist. Additionally, it is sensitive to outliers, which
can significantly influence the model’s predictions

Extreme Gradient Boosting (XGBoost)
Extreme Gradient Boosting, or XGBoost, is an advanced machine learning algorithm that

builds upon the foundation of gradient boosting. It is designed to construct a sequence of
models in which each subsequent model aims to rectify the errors made by its predecessor.
This process is iteratively carried out to improve the overall predictive accuracy of the en-
semble model. The objective function of the XGBoost model is determined by combining the
loss function with a regularization term. The loss function serves to measure the predictive

17

power of the model, quantifying the difference between the predicted and actual values. On
the other hand, the regularization term acts as a penalty, controlling the complexity of the
model by discouraging overfitting. This balance between model performance and complexity
helps to prevent the XGBoost model from fitting the training data too closely, which could
result in poor generalization to new data. One of the key strengths of XGBoost lies in its
versatility and efficiency. It supports various loss functions, making it adaptable to a wide
range of predictive modeling tasks, including regression, classification, and ranking. Addi-
tionally, XGBoost incorporates several innovative techniques to enhance performance and
speed, such as a novel tree learning algorithm and an efficient handling of sparse data. These
features, combined with its capability to perform parallel computation and scale effectively
across multiple cores, render XGBoost an exceedingly powerful tool for tackling complex
machine learning challenges.

Polynomial Regression
Polynomial regression is a type of regression analysis where the relationship between the

independent variable(s) and the dependent variable is modeled as an nth degree polynomial.
This technique is particularly useful for capturing the non-linear relationship between the
dependent and independent variables [35]. By regressing the dependent variable on powers
of one or more independent variables, polynomial regression allows for the modeling of more
complex, nonlinear dynamics that cannot be captured by simple linear regression. This ap-
proach can be instrumental in uncovering underlying patterns in the data, such as curvilinear
trends, that are essential for making accurate predictions or understanding the behavior of
variables in various scientific and engineering contexts.

Random Forest
Random Forest is a well-established machine learning technique used for a variety of tasks,

including regression and classification. As an ensemble learning method, it combines the
predictions of numerous simple models, often referred to as "weak learners," to form a more
accurate and robust model [36]. The core components of a Random Forest are decision trees,
which work by dividing the input space into distinct, as homogeneous as possible, regions.

One significant benefit of the Random Forest algorithm is its ability to assess the impor-
tance of features. This is accomplished by measuring the decrease in impurity associated
with nodes in the trees that utilize a particular feature, a process that is repeated across
all trees in the forest. However, Random Forests can become computationally intensive and
require a longer training time as the size of the dataset increases.

18

Decision Trees
Decision Tree (DT) was built as the name says. In its internal building, each node repre-

sents a feature that has a branch, where each branch represents a rule decision that outputs a
node output. It has a root node that series of decisions that makes decisions based on the at-
tributes thus leads to prediction or classification, depending on the task [37]. Decision Trees
adeptly handle non-linear relationships between variables, making no assumptions about the
distribution of the data. They also excel in managing both numerical and categorical data,
offering a versatile tool for a wide range of applications. Moreover, their capability to deal
with missing values and resist the influence of outliers further underscores their robustness
and adaptability in diverse analytical scenarios.

K-Nearest Neighbors (KNN)
The K-Nearest Neighbors (KNN) algorithm is a simple yet versatile method used in ma-

chine learning for both classification and regression tasks [38]. It operates on the principle
of feature similarity, where predictions for new instances are based on the most similar cases
(or nearest neighbors) in the training dataset. This similarity is typically determined by
calculating the distance between instances using metrics such as Euclidean or Manhattan
distance. The prediction is then made through a majority vote (for classification) or by
averaging (for regression) the outcomes of the ’k’ nearest neighbors.

Despite its simplicity, KNN faces several challenges. Its computational efficiency drops
as the dataset size increases, requiring the calculation of the distance between the query
instance and each example in the training set, making it resource-intensive for large datasets
[39]. Furthermore, KNN’s performance heavily depends on the choice of the ’k’ parameter;
selecting an unsuitable ’k’ can lead to overfitting or underfitting, affecting the algorithm’s
ability to generalize from training to unseen data. KNN is also sensitive to the scale of the
data and the presence of irrelevant features, which can negatively impact accuracy if the data
is not properly normalized or if irrelevant features are not excluded. The algorithm struggles
in high-dimensional spaces due to the "curse of dimensionality," as the increased dimensions
make the concept of "nearest neighbors" less clear due to the increased distance between
points. Lastly, unlike model-based approaches, KNN does not provide an explicit model
representation, which limits its interpretability and the ability to understand the underlying
patterns in the data.

19

2.2 Literature Review

This section presents an in-depth literature review focused on various research studies re-
lated to machine learning and its applications in predicting electricity patterns, customer
behaviors, and other interconnected subjects. We delve into a range of academic works,
analyzing and synthesizing their methodologies, findings, and the implications they hold for
the field of machine learning. We split and categorize the reviews by distinct area of focus
for each paper

• Machine Learning in Energy Consumption Prediction
Keytingan et al. [40] provide an overview of energy consumption prediction using ma-
chine learning, focusing on techniques like regression analysis, neural networks, decision
trees, and SVM. They emphasize the role of machine learning in energy efficiency, par-
ticularly in smart buildings. Risul Islam Rasel et al. [41] propose a machine learning
approach to predict the electric energy use of a low-energy house using weather and
occupancy data. The dataset includes hourly measurements of electric energy con-
sumption, outdoor temperature, and occupancy status for one year. Two machine
learning algorithms, support vector regression (SVR) and Artificial Neural Network
(ANN), are used to build predictive models. The authors use the root mean square
error (RMSE) and the mean absolute error (MAE) as performance metrics to evalu-
ate the models’ accuracy. The results show that both SVR and ANN perform well
in predicting electric energy use, with ANN outperforming SVR in terms of RMSE
and MAE. The paper also includes a feature selection analysis using principal compo-
nent analysis (PCA) and F-test to determine the most relevant features for predicting
energy consumption.

• Machine Learning in Customer Behavior and Churn Prediction
Toderean et al. [42] focus on the use of machine learning algorithms for churn prediction
in the prepaid mobile telecommunications industry. They provide a review of various
feature selection techniques, including correlation analysis, principal component anal-
ysis, and recursive feature elimination. The article presents a case study of churn
prediction in the prepaid mobile telecommunications industry using a SVM algorithm.
The authors describe the data collection and preprocessing steps, feature selection,
model training, and evaluation. They compare the performance of the SVM algorithm
to that of other machine learning algorithms and highlighted the importance of feature
selection in improving model accuracy. Bart Larivière et al. [43] discuss predicting cus-

20

tomer retention and profitability using Random Forests and Regression Forests, with a
focus on customer behavior and transactional data. Prasad Bhosale et al. [44] propose
a machine learning-based model for customer churn prediction in the telecom industry,
using data mining methods and feature engineering.

• Predictive Modeling in Financial Markets
Roshan Christy R et al. [45] work were to predict next electricity bill amount. Their
work focused on classical machine learning algorithms. They built their models depend-
ing on customers socioeconomic and housing characteristics, like how many rooms in
the customer house, or does he has a TV or not. The difference between his work
and ours is that they tried to predict bills for postpaid meters, but we are trying to
predict next charge date for the prepaid customers, also they depend on housing data
which couldn’t be available for all customers, while we are focusing on the customer
historical records to predict his next charge date. C R Karthik et al. [46] compare
the performance of DNN and LSTM models in predicting daily variance in financial
markets, specifically analyzing the NIFTYIT index.

• Machine Learning for Purchase Behavior Analysis
Evans [14] presents a study on predicting customers’ next purchase day using algo-
rithms like decision trees, random forests, and SVM, with a focus on feature selection
and model training. Jing Li et al. [47] and Zeng et al. [48] propose methods for predict-
ing online purchasing behavior, emphasizing the role of SVM and logistic regression
classifiers in understanding customer demographics and shopping behaviors. Qian Liu
et al. [49] introduce deep learning models for consumer behavior analysis, discussing
the effectiveness of rDNN and KmDNN models compared to traditional models

Table2.3 and Table2.4 present a comparison of various related studies. It includes the
algorithms utilized in each study and the highest accuracy values reported for each algorithm.

Table 2.3: Literature review summary - Part 1

Work Research About Publish Date

Keytingan et al. [40] Energy consumption prediction by using ma-
chine learning for smart building: Case study in
Malaysia

2021

Continued on next page

21

Table 2.3 – continued from previous page

Work Research About Publish Date

Toderean et al. [42] Methods for Churn Prediction in the Pre-Paid Mo-
bile Telecommunications Industry

2016

Evan [14] Predict customers Next Purchase Day for Grocery 2021
Risul Islam Rasel et
al. [41]

Predicting Electric Energy Use of a Low Energy 2019

Bart Larivière et al.
[43]

Predicting customer retention and profitability by
using random forests and regression forests tech-
niques

2005

Jing Li et al. [47] Using Support Vector Machine for Online Pur-
chase Predication

2017

Zeng et al. [48] User behavior modeling, recommendations, and
purchase prediction during shopping festivals

2019

Qian Liu et al [49] Deep Learning-Based Consumer Behavior Analy-
sis and Application Research

2022

Prasad Bhosale et al
[44]

A Dynamic Churn Prediction Model using Ma-
chine Learning Approach

2021

C R Karthik et al [46] Forecasting variance of NiftyIT index with RNN
and DNN

2022

Eyden Samunderu et
al . [50]

Predicting customer purpose of travel in a low-
cost travel environment—A Machine Learning Ap-
proach

2022

Roshan Christy R et
al. [45]

Prediction of Electricity Bill using Supervised Ma-
chine Learning Technique

2022

Table 2.4: Literature review summary - Part 2

Work Algorithms Metrics Value Records Features

[40] k-NN MAPE 0.94% +10K -
SVM 0.67%
ANN 1.84%

Continued on next page

22

Table 2.4 – continued from previous page

Work Algorithms Metrics Value Records Features

[42] SVM Accuracy 99.70% +3K 21
BN 99.10%
MLP 99.55%

[14] XGBClassifier Accuracy, F1-Score 92%, 0.85 +1M 8
LogisticRegression 90%, 0.79

[41] SVR MSE, RMSE 1.32%, 11.49% - -
ANN 0.14%, 0.18%

[43] Random Forests AUC 0.714 100K -
Logistic Regression 0.695

[47] SVM F1-Score 0.046 10K 7

[48] Logistic Regression Accuracy 74% +500K -

[49] DNN AUC 0.7893 + 2M 159
rDNN 0.8322
KmDNN 0.8064

[44] Random Forest Accuracy 95% +5K -
DT 89%
BaggingClassifier 94%
KNN 81%

[46] DNN MSE 9.6571 +25K 6
RNN 8.233

[50] Random Forests Precision 0.90 +67K 161

[45] SVR R2 Score -0.56% 10
Decision Tree 72.40%
Random Forest 84.97%
Linear Regression 88.09%
Ridge Regression 88.52%

Based on previous literature reviews, it is evident that related work has focused either

23

on predicting prepaid churn or on customers’ next purchase of a specific item in grocery
or online shopping. However, in our model, we take a different approach by predicting the
next charge date for prepaid electricity meters. We believe our model can be applied to any
prepaid meter in utility services, providing a practical solution for utility companies looking
to improve customer service.

24

Chapter 3

Methodology and Design

Contents
3.1 Challenges . 28

3.2 Dataset and Data Processing . 29

3.2.1 Data Collection . 29

3.2.2 Data Privacy and Protection . 30

3.2.3 Target Feature Creation . 31

3.2.4 Data Preprocessing . 32

3.3 Model Implementation and Selection 43

3.3.1 Selection of Tools and Environment 44

3.3.2 Non Machine Learning Approach . 45

3.3.3 Classical Machine Learning Algorithms 46

3.3.4 Deep Learning: Emphasizing Recurrent Neural Networks 53

3.4 Evaluation of Prediction Models using the Differential Penalty
Score (DPS) . 70

3.4.1 Purpose of the DPS Metric . 70

3.4.2 DPS Formula . 70

3.4.3 Comparison of Model Performances 71

To construct a machine learning model, several preliminary steps must be completed.
Figure 3.1 illustrates the common steps required to build such a model. This process outlines

25

the essential steps for developing, deploying, and maintaining our predictive model. Our
methodology unfolds as follows:

1. Define the Problem: We start by understanding the problem to correctly identify
how to solve it. A clear understanding of the problem guides us in selecting suitable
regression algorithms for predicting numerical outcomes due to their appropriateness.

2. Data Collection: We obtain data exclusively from prepaid meters provided by the
JDECo company.

3. Data Preprocessing and Exploration: Before modeling, we perform the preprocessing
stage. This includes visualizing the data to identify patterns and insights, conducting
statistical analysis to understand its distribution and relationships, and cleaning the
data to correct inconsistencies or remove outliers.

4. Baseline Model Training: Initially, we train our model using the raw dataset without
any feature engineering. This baseline model serves as a reference point, allowing us
to measure the impact of further feature selection, engineering, and optimizations on
model performance.

5. Feature Selection and Engineering: We then extract and engineer new features that
are likely to enhance the model’s predictive accuracy.

6. Model Selection and Training: We proceed to select and train a more sophisticated
machine learning model. This step involves experimenting with various algorithms and
configurations to identify the most effective solution for our prediction task.

7. Model Evaluation: We evaluate the model using metrics suitable for regression tasks,
such as mean absolute error (MAE) or root mean squared error (RMSE), to determine
the model’s accuracy.

8. Model Fine-tuning and Optimization: Based on the evaluation results, we engage
in fine-tuning and optimization to enhance the model’s accuracy. This may include
adjusting model parameters, employing more advanced feature engineering techniques,
or exploring alternative modeling approaches.

26

Figure 3.1: Building ML steps

27

3.1 Challenges

Modeling a problem to be solved in the machine learning context can face several challenging
issues in general. Specifically, in our NCDP, we face the following issues:

1. Data Quality: Data quality can dramatically affect performance if left unprocessed or
processed incorrectly. Therefore, we first perform data visualization and analysis to
understand the relationships between the features, their correlations, and data statis-
tics. This step aids us in cleaning the data by identifying null values and handling
them. It also assists us in performing feature selection and feature engineering.

2. Selecting Features: In the area of feature selection, our dataset presents a unique set of
challenges. It includes many features, some of which are relevant to our predictive task,
while others are not. Selecting features is an important step in building an effective
machine learning model. This process is particularly vital in our context because it
directly affects the accuracy of predicting the next charging date for prepaid meters.
To address this challenge, we implement a three-method approach. First, we use the
"SelectKBest" method from the Scikit-learn library [51], a powerful feature selection
tool that aids in identifying the most significant features based on statistical tests.
This method enables us to isolate features that have the greatest predictive power
with respect to the target variable. Using this technique illustrates the importance of
the features we extract and engineer, and allows us to enhance our model prediction.
Second, we apply Principal Component Analysis (PCA). The third method involves
grouping features into relative categories and running tests over these categories sepa-
rately and combined to see their effect on the model.

3. Model Selection: Choosing the right machine learning model that fits the nature of
our data is a challenge. Different models have different strengths and weaknesses. Ad-
ditionally, tuning hyperparameters for optimal performance requires a careful balance
between model complexity and generalization ability to avoid overfitting or underfit-
ting. So address this challenge, we will use different classical machine learning algo-
rithms as a baseline, then we will build a Neural Network Model approach using RNN.
For finding hyper parameters for RNN, we will conduct various methods to search
for optimal hyper parameters, focusing on a Hyper Search mechanism using Random
Search by Keras, which will loop through previously setup parameters with steps to
find optimal hyperparameters. Also, we will build our Model using different layers

28

types to find the best layer types that suits our problem.

4. Scalability and Efficiency: As data volumes grow, ensuring that our algorithms can
scale effectively without significant loss in performance becomes a challenge. This
includes considerations for computational resources and algorithm efficiency. In this
step, we are building our model using different record counts to observe the effect of
dataset size and the performance of the models in relation to this.

3.2 Dataset and Data Processing

3.2.1 Data Collection

The dataset for prepaid meters used in this thesis was obtained from the Jerusalem Dis-
trict Electricity Company (JDECo). The dataset encompasses charges made across several
types of prepaid meter systems. Although these systems have files with different names and
schemas, they ultimately contain the same information necessary for this study. We have
consolidated the data from various system types into three flat CSV files. The primary
dataset file contains detailed charge information for all customers within a specific period,
while the other files include customer service information, such as meter amp class, among
other data. The company operates 10 different prepaid systems for various meter types, and
data from all these meter types have been collected. The dataset spans from January 2021
to December 2021 and comprises approximately 850,000 records with 39 features. Table 3.1
illustrates some of the features in the dataset.

Feature Description
meterNo A unique identifier for each prepaid meter
customerNO A unique identifier for each customer, it also means service number
paymentDate The date of specific charge record
KWTotalPrice The amount of money the customer paid for watt for that specific record
KWAmount The amount of KW the customer purchased for that specific record
previousChargingDate The date of the previous charge for specific charge
accumulatedKWConsumed The total amount of electricity used by the customer
tariffID The tariff ID that represents the KW price and fixed amount per day
branchID The branchID represents a classification number for the Governorate of

each customer

Table 3.1: Selected features from the charging dataset

29

Feature Description
customerNO Foreign key customer number
facilityType The type of the facility that the meter serves
phasesAMPClass A category class that represents the number of meter phases. It also represents

how many amperes this meter can supply
areaID The area id where the meter (the service) is located. For example, if the meter

is located in Jerusalem Bait-Hanina, the branchID would be 8, and the area
ID 12

subBranch The city id where the meter (the service) is located.

Table 3.2: Features within the service information dataset

Feature Description
facilityType A number represents the type of the facility.
facilityGroupID A number represents the group that the facility refers to, like Commercial,

Residential.

Table 3.3: Features within the facility dataset

Cust. NO Pay AMT Pay. Date P. Charging Date Tarrif KW AMT Date Diff. Branch ID
3507073150 200 12/7/2021 12/3/2021 71 332 NULL 35
3507073150 200 12/13/2021 12/7/2021 71 348 NULL 35
3507073150 200 12/19/2021 12/13/2021 71 346 NULL 35
3507073150 200 12/24/2021 12/19/2021 71 346 NULL 35
7047102790 300 1/26/2021 12/3/2020 21 534 NULL 70
7047102790 150 2/9/2021 1/26/2021 21 269 NULL 70
7047102790 220 2/23/2021 2/9/2021 21 391 NULL 70

Table 3.4: Sample of charges dataset (raw dataset) records/features

3.2.2 Data Privacy and Protection

In this study, we have taken several measures to uphold the highest standards of data privacy
and protection, in line with ethical guidelines.

Anonymization of personal data The dataset includes historical data on prepaid meter
charges and consumption patterns. To protect the privacy of individuals involved, all per-
sonally identifiable information (PII) associated with customer accounts has been deleted.
This includes excluding names, phone numbers and full addresses from the data set. By re-
moving these elements, we ensure that the data cannot be directly linked to any individual,
significantly reducing the risk of privacy breaches.

Masking of Customer Numbers In addition to omitting direct identifiers, we have
employed a masking technique on customer numbers, which could potentially be used to

30

infer the identity of the customers. Masking involves replacing the original customer numbers
with pseudonyms or non-identifiable codes. This process ensures that each customer’s data
remains confidential and secure, as the masked identifiers do not retain any linkage to the
customers’ actual identities or any other personal information.

Data Access and Handling Protocols Access to the anonymized and masked dataset
is strictly controlled and limited to the research team involved in this study.

3.2.3 Target Feature Creation

Our target feature is a numerical value representing the number of days it takes a customer
to recharge his/her meter. In the dataset we obtained, this target feature does not exist as
a standalone feature, and therefore, it needed to be created. We accomplished this through
the following steps: First, we sorted the dataframe by two columns: ‘customerNO‘ and ‘pay-
mentDate‘, arranging the charges from oldest to newest. Next, we calculated the difference
in days until the next payment for each customer. This was achieved by grouping the data
by ‘customerNO‘ and then applying the ‘shift(-1)‘ method to shift the data upwards in the
‘paymentDate‘ column. The result of this subtraction provides the number of days until
the next charge, which serves as our target feature. Subsequently, we converted this time
difference into a numeric format representing days. It is expected that a null value for our
target feature will be generated for every customer’s last record, as the next charge date for
the last entry is unknown. This record will be dropped during data cleaning. We named the
target feature ‘daysDiffToNextCharge‘.

Customer NO Payment Date Days Diff to Next Charge

3507073150 12/7/2021 6
3507073150 12/13/2021 6
3507073150 12/19/2021 5
3507073150 12/24/2021 NULL
7047102790 1/26/2021 14
7047102790 2/9/2021 18
7047102790 2/27/2021 NULL

Table 3.5: Demonstration of target feature

31

3.2.4 Data Preprocessing

Generally, real-world data, which is also known as raw data, may be characterized by in-
completeness, noise, and inconsistency. Incomplete data refers to the absence of specific
attribute values, while noisy data encompasses errors, missing values, and outliers. Incon-
sistent data, on the other hand, involves discrepancies in codes or names [52]. Therefore, we
need to perform data preprocessing which involves in cleaning data, visualization, feature
engineering and statistical analysis

Data Visualization and Statistics

Data visualization helps us to understand the relation and correlation between features by
looking to data exploration through visualization and statistical analysis. Visualization and
statistical analysis helps to understand the underlying patterns, trends, and correlations be-
tween the features [53]. By examining the data, we can gain insights into the underlying
patterns, trends, and correlations between features, which will help make informed decisions
when selecting features and building machine learning models. We can start by showing
statistical data about important features like “paymentAMT”, and our target feature “days-
DiffToNextCharge”. Understanding these statistics can be very useful in our model, since it
can give an initial understanding of data distribution. Also the Min, Max, and Interquartile
Ranges (25%, 50%, 75%) can help identify outliers in the data

Statistics Value Description of Statistics

Count 851,971.0 Number of non-null records
Mean 129.429 Mean of the values
Standard Deviation 121.043 Standard deviation of the records
Minimum 0.0 Minimum value for a payment
25% Quartile 50.0 First quartile (25th percentile)
Median (50% Quartile) 100.0 Second quartile (Median, 50th percentile)
75% Quartile 150.0 Third quartile (75th percentile)
Maximum 2,000.0 Maximum value

Table 3.6: Statistical table for payment amount feature

Data Analytics and Analysis
Table 3.6 is a summary which tells us that most payments are relatively small (below

150.0), as the median (50% percentile) is 100.0. However, there are some larger payments as

32

Figure 3.2: Histogram for payment amount feature

well, up to 2000.0. The relatively large standard deviation indicates that there’s a significant
variation in payment amounts. It also shows that there are some free or other type of charges
which could be outliers.

We can also draw a histogram distribution for this feature. Figure 3.2 is a histogram
for payment amount feature which shows the histogram distribution for payment amount
field. Histogram distribution shows how the data is distributed as frequency term [54]. It
also draws a kernel density estimate Line “KDE”, which is a smooth curve that represents
a probability density function. KDE models the ’probability’ of the data distribution. Its
curve can exceed the actual frequencies in the histogram because it’s showing densities, not
frequencies.

The target feature, as summarized in Table 3.7, showcases its statistical characteristics,
highlighting a broad range in the number of days until the next charge, spanning from the
same day to nearly 10 months later. The average time to the next charge extends just
beyond two weeks, yet it is accompanied by a relatively large standard deviation. This
suggests that the data is widely dispersed around the mean. Such dispersion indicates
the presence of outlier records which could potentially impact model performance if not
addressed. Therefore, it is imperative to clean these outliers from the dataset prior to
training the model to ensure more accurate and reliable predictions.

Additionally, Figure 3.4 displays a bar chart that illustrates the relationship between
various types of facilities and their recharge frequency. The aim of this plot is to uncover

33

Statistics Value Description of Statistics

Count 851,971 Total number of non-null records
Mean 13.074 Mean of the values
Standard Deviation 11.429 Standard deviation of the records
Minimum 0.0 Same day (minimum time to the next charge)
25% Quartile 5.0 First quartile (25% of charges occur within 5 days)
Median (50% Quartile) 10.0 Median number of days to the next charge
75% Quartile 18.0 Third quartile (75% of charges occur within 18 days)
Maximum 296.0 Longest time to the next charge (nearly 10 months)

Table 3.7: Target feature statistics

Figure 3.3: Histogram distribution for days to recharge

patterns associated with facility types and their corresponding recharge behaviors. By an-
alyzing this data, our goal is to determine whether there are any new features that can be
extracted to improve our model’s performance. Identifying such features could provide valu-
able insights into how different facility types influence recharge behavior, potentially leading
to more accurate predictions of recharge events.

From Figure 3.4, we observe significant variations in the charging cycles among different
types of facilities. For example, facilities like print shops, epicenters, groceries, supermar-
kets, and swimming pools exhibit more frequent recharge activities, typically every 2 to 5
days, compared to facilities such as newspapers, elevators, petrol stations, and others. This

34

Figure 3.4: Highest/Least 10 facilities average recharge days

Figure 3.5: Facilities recharge days grouped

35

Figure 3.6: Highest/Least 10 area’s average recharge days

discrepancy provides valuable insights into the potential benefits of incorporating facility
type into the original dataset or extracting new features in subsequent analysis steps. Fur-
thermore, the facilities have been categorized into distinct groups, revealing three primary
types of facilities. Figure 3.5 demonstrates a clear differentiation between commercial and
residential facilities, with the latter less likely to engage in frequent recharging compared
to their commercial counterparts. This categorization and the observed recharge behaviors
can significantly influence the development and refinement of predictive models, offering a
nuanced understanding of how facility type affects recharge frequency.

Additionally, Figure 3.6 showcases a bar chart visualization that illustrates the recharg-
ing patterns of the top and bottom 10 areas, shedding light on their relationship with the
frequency of meter recharging across different locations. This visualization reveals notable
disparities in the recharging cycles among the areas, which could reflect differences in usage
behavior or consumption patterns. For instance, areas with shorter recharge intervals, like
Wade Rahal, might consume energy at a faster rate, leading to quicker depletion of their
prepaid credit and necessitating more frequent recharging. Such analysis could offer critical
insights into the importance of including geographical location in the dataset, potentially
aiding in the discovery of new features that could enhance predictive modeling efforts by
accounting for regional variations in energy consumption and recharging habits.

36

Figure 3.7: Mean days over months

Figure 3.7 presents a bar chart for month vs recharging frequency. We can notice that
recharging frequency increased in winter and summer, and decreases in other seasons. This
illustrates that there is a relation between the month of the year and meter recharging fre-
quency. The figure shows that in January and February months, customers used to recharge
their meters more frequently, which could be related to the low temperature in winter. Also,
in summer months, the figure shows that charging frequency less than winter, and these
months have almost the same charging frequency. This can give us insights about extracting
new features based on the month of the charge

Data Correlation

For our raw dataset, we used the Seaborn framework [55] to generate a correlation heatmap,
as shown in Figure 3.8. A correlation heatmap is a method used to display data that rep-

37

resents the correlation between numerical features in the dataset. This type of heatmap
visually displays data using colors to represent values on a 2D grid, where cells show the cor-
relation coefficient between pairs of numerical features. These coefficients reveal the strength
and direction of their linear relationships, ranging from -1 to 1. Values close to 1 or -1 indi-
cate strong positive or negative relationships, respectively, while values near 0 show weak or
no linear relationships. Negative values mean that as one variable increases, the other tends
to decrease, and vice versa. The analysis of the heatmap results aids in understanding the
dataset’s relationships, assisting in the feature selection process to build a predictive model.
The heatmap represents the correlation between all features in the original dataset. From
this, we can deduce that there is a strong correlation between pairs of values like “paymen-
tAMT and KWAmount,” “paymentAMT and KWTotalPrice,” among others, while there is
negative or weak correlation between the target feature “daysDiffBetweenLastTwoCharges”
and all other features. Consequently, we cannot rely solely on the raw dataset collected from
the company and need to employ feature engineering techniques to extract new features.
These features will assist in building a predictive model to forecast the next charge date or
period for customers

Data Cleaning

Data cleaning is an essential step in the machine learning process that involves identifying,
correcting, or removing any inaccuracies, inconsistencies, or errors present in raw data [56].
Data cleaning aims to make the data better and more usable for machine learning algorithms
and improve the reliability and quality of the data which will affect positivity and improve
the performance and accuracy for a certain machine learning model that built on this data.
To perform data cleaning on our dataset, we need to perform several tasks, such as handling
missing values, removing duplicates, identifying and handling outliers, feature scaling and
normalization. As shown in the heatmap figure 3.8, there are several features that either
have null values or where all the values in the column are null. Therefore, we will check how
many rows have null values for these features and decide whether to drop them or handle the
null values. Typically, several aspects should be considered when handling missing values or
missing data. These considerations are summarized as follows:

1. Impact on analysis: If the missing data values will impact the analysis of the data, so
it is preferred to impute the missing values rather than dropping it

2. Data Imputation: If we have a reliable way to estimate the missing values, it is preferred

38

Figure 3.8: Heatmap feature correlation for the charges dataset

39

to impute the value. These ways could be any method which depend on the data itself,
like mean value, median value, regression value or others

3. Nature of the data: If the data is sequential or time-series data, dropping data might
create inconsistency in the sequence

4. Random data: If the missing data values are for random data, so dropping it certainly
won’t affect the model

Based on the previous points, and as shown in Table 3.8, we can process our missing
values as follows:

1. Irrelevant data: Datasets may contain irrelevant data columns, such as sequence num-
bers or indexes representing information from other systems, or random numbers like
"Payment Number". Features like "Payment NO", "Voucher NO", "Government Pay-
ment NO", and "Misc Payment NO" are sequence numbers that do not describe the
target feature and are not related to it; therefore, they can be safely dropped without
affecting the dataset’s consistency.

2. “Meter Reading Date”, “KW Total Price”, “VAT”, “Total Fixed for Last Days”, “Debts
Before Charging”, and “Total Misc” features: These features contain data that cannot
be imputed by mean, median, or other methods. Furthermore, they have a small
number of missing values, which do not exceed 0.001% of the dataset. Thus, dropping
the rows with null values for these features will not negatively impact our model.

3. “Tariff Price” feature: This column is entirely null and could be imputed by another
column. However, since we have another column, “tariff id”, which can reflect the same
meaning or have the same effect on the data, we choose to drop the “Tariff Price”
feature.

4. “Date Difference Between Last Two Charges” feature: This feature is entirely null,
but it can be imputed from other features, as we have the “previous charging date”
and “payment date” for each charge record. Therefore, we can impute its value by
subtracting “Previous Charging Date” from “Payment Date”, which will give number
representing the days’ difference between those two features.

40

Column Name Number of Null Values Percent of Null Values

Meter Reading 4,298 0.004%
Meter Reading Date 152 ∼0.0%
Tariff Price 891,134 100%
KW Total Price 120 ∼0.0%
VAT 120 ∼0.0%
Fixed Amount Per Day 891,134 100%
Total Fixed For Last Days 120 ∼0.0%
Debts Before Charging 120 ∼0.0%
Debts After Charging 891,134 100%
Debts Taken 891,134 100%
Payment Description 891,134 100%
Payment NO 1,597 0.001%
Voucher NO 1,343 0.001%
Government Payment NO 891,134 100%
Misc Payment NO 891,134 100%
Tabulated Debt 891,134 100%
Social Campaign 891,134 100%
Total Misc 120 ∼0.0%
Date Difference Between Last Two Charges 891,134 100%

Table 3.8: Null value analysis of the dataset columns

Feature Insights and Engineering Opportunities

In this section, we analyze the results from Section 3.2.4 on Data Visualization and Statistics,
exploring the potential for creating new features based on insights gained from visualization
and statistical analysis. Although these features have not yet been created, our goal is to
discuss the opportunities for their development and how they might be used in subsequent
steps.

Masoud Nikravesh et al. [57] published a book about feature selection, describing tech-
niques for feature selection and highlighting its crucial role in enhancing the generalization
capabilities of learning machines. They emphasize the importance of data representation,
which we addressed in Section 3.2.4. This led us to visualize the relationship and correlation

41

between various features. This step can involve selecting a fixed number of features, whether
binary, categorical, or continuous.

Facility Type Analysis
By analyzing the results of the previous section, and as shown in Figure 3.4, we notice a

relationship between the facility type and the number of days to recharge. This observation
leads us to consider creating one of the following:

1. Continuous Feature: In the NCDP, a continuous feature is the average number of days
to recharge based on the facility type. The advantage of using a continuous feature
is that it aids in collecting more accurate data. This helps our model learn from this
feature and improves prediction performance.

2. Categorical Feature: A categorical feature can be either binary or a classifier for the
facility that categorizes how often a facility type recharges. Creating a categorical
feature can sometimes simplify the model and make it easier to interpret. It can also
help the model avoid overfitting during the training process.

Several methods exist for selecting the best features to apply. One such method is using
Analysis of Variance (ANOVA), a statistical method used to test differences between two or
more means. We applied ANOVA to the features mentioned above, resulting in an F-value
of 614.80. This value suggests that "facilityType" significantly affects our target feature.
Additionally, considering that machine learning is an empirical process, and given that we
do not have a large number of new features to test, we have decided to create both features.
Subsequently, we will conduct tests to measure the model’s performance after applying both
features.

Facility Groups Analysis
Using the same methodology as before, our dataset includes various groups corresponding

to each facility, broadly categorized into three major groups: "Residential", "Temporary",
and "Commercial". To investigate the relationship between the facility group and our target
feature, we graphically represent this potential correlation by examining the variance between
the facility group and the mean of our target feature. As observed in Figure 3.5, there is a
noticeable discrepancy in the data for each group of facilities. This difference may lead us
to create new features to capture this distinction more accurately.

42

Geographical Analysis
The geographical region or residential area impacts the nature of charging operations, as

hotter areas typically see an increase in charging rates during summer days, unlike colder
areas. Therefore, we have conducted an investigation by graphing the residential area against
the average number of days for recharge. The results, as shown in Figure 3.6, suggest a
relationship between the geographical area and the frequency of recharging. This relationship
prompts the creation of new features that may help improve the performance of the proposed
model.

Season Analysis
As demonstrated in Figure 3.7, there appears to be a variation in the number of days

between charges and the frequency of recharging across different months. This variation
underscores the potential for the creation of new features that could enhance the performance
of our proposed model. Therefore, we create a categorical feature that categorizes the month
into high, low, and mid. This categorization represents the frequency with which customers
recharge in a given month. We have created a categorical feature because the mean value
between months is not significant.

3.3 Model Implementation and Selection

In this section, we explain the process of implementing our machine learning models to
create the NCDP for customers based on their previous charging behavior and other relevant
features. The choice of a machine learning model significantly affects the prediction outcome.
The selection of the model depends on several factors, which are pertinent to our thesis and
are mentioned as follows:

1. Nature of the problem: usually for machine learning problems, the nature of the prob-
lem is either classification, regression or clustering. For each problem, there are several
machine learning models and algorithms that can handle the problem. Each algorithm
differs in its approach, complexity, and the type of data it handles best. Some al-
gorithms, like neural networks, are highly flexible and can be used for various types
of problems but require large amounts of data and computational power. Others,
like decision trees, are simpler and more interpretable but might not capture complex
patterns as effectively.

43

In the NCDP, the problem is identified as a regression problem that can also be ap-
proached as a time series problem, since it involves predicting future events based on
past data, and the sequence of the data is significant.

2. Data characteristics: the type, quantity and quality of the data also influence the
model selection process. Deep learning models are considered as data-hungry models,
so they need a large amount of data for better learning and better performance and
consequently generalization [58].

As a result of the considerations outlined above, and given the variety of models that
can be applied, we face the challenge of finding the model that offers the optimal balance
between performance and complexity. At the beginning of this thesis, through the previous
sections, we have clearly defined our problem and gained an understanding of the data we
have, including the relationships between its features. In the current step, we are creating
and selecting models capable of addressing the problem. Initially, we are developing a basic
models using simple algorithms like linear regression, XGB and others, as this provides us
with a benchmark to measure the performance of more complex models. Subsequently, we
will experiment with a more complex model, such as a RNN, and compare the performance
between the basic and complex models.

3.3.1 Selection of Tools and Environment

Programming Language and Libraries:

• Python 3.9 was chosen for its extensive support in data science and machine learning,
offering robust libraries and a vast community for troubleshooting and support.

• The utilization of libraries like NumPy and Pandas facilitated efficient data manipu-
lation and analysis.

• For model building and neural network implementation, Keras and TensorFlow were
selected. Keras, running on top of TensorFlow, offered a user-friendly interface for
constructing and training neural networks.

• The LSTM (Long Short-Term Memory) layer from TensorFlow’s Keras was a key
component in the RNN architecture, chosen for its effectiveness in handling sequential

44

data and its ability to overcome the vanishing gradient problem common in standard
RNNs.

• Regularizers, EarlyStopping, and Adam optimizer from Keras played important roles
in enhancing model performance and preventing overfitting. Regularizers helped to
impose penalties on layer parameters or layer activity, EarlyStopping was used to halt
the training process at the right time, and the Adam optimizer was utilized for its
adaptive learning rate capabilities.

• TimeseriesGenerator from TensorFlow to create sequences for RNN, which facilitates
the generation of data for training and testing time series models.

Hardware Specifications:
The computational experiments were conducted on a desktop PC equipped with the following
hardware components:

• Processor (CPU): Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz, 4 cores.

• Memory (RAM): 16 GB DDR3 at 1600 MHz.

• Storage: 256 GB SSD

• Graphics Card (GPU): NVIDIA Quadro K3100M, Intel(R) HD Graphics 4600.

• Operating System: Windows 10 Pro, Build 19045

3.3.2 Non Machine Learning Approach

For predicting the next charge date, several non-machine learning methods can be employed,
with one of the simplest being the calculation of the average number of days between charges.
This method, while not accounting for individual customer patterns or historical trends, of-
fers a straightforward approach to the task. Utilizing this method, we calculated the average
number of days between two consecutive charges across the entire dataset and individually
per customer, applying it to the test set we had previously segmented. The results showed
an average of 8.10 days for the dataset as a whole and 5.07 days for individual customer
averages. Despite these averages appearing somewhat high, they will serve as a foundational
baseline for further analysis.

45

3.3.3 Classical Machine Learning Algorithms

In this section we will build our classical machine learning algorithms models like linear
regression, polynomial regression, XGB, forest tree and decision tree algorithms. Classical
machine learning algorithms have some advantages compared with deep learning algorithms.
Usually, they have very fast training time, needless data size for training, and their algorithms
are more simplicity and interpretability. So, in this step, we will first build the model using
only the charging dataset file, then we will add features related to service area etc. from the
other datasets files we have. Also, we will extract and add new features to the models based
on statistics founded in the previous sections, then we will compare the results for each step.

Establishing a Baseline Model

In this experiment we will train our model based on all charges in raw charges dataset file
only, without adding or extraction any new feature from service dataset file.

Goal of this experiment: The goal of this experiment is to be considered as a baseline
for further experiments, which can give us insights about further steps

Algorithm used MAE value Time elapsed to train in seconds

Linear 7.22 < 1
Polynomial 6.93 2.89
XGB 6.46 3.05
Decision Trees 6.59 2.58
Random Forest 6.45 211.91
KNN 6.89 3.615

Table 3.9: Classical ML algorithms results on raw dataset

Table 3.9 shows the performance of classical machine learning algorithms that was built
using only charging dataset file, without extracting new features, or adding further features
like area, tariff. . . etc. The models were built using all records exists in the dataset with
cleaning rows with null values as mentioned in section 3.2.4. We noticed that the algorithms
have very fast training time, with an average performance of about 6.7 on MAE metrics.

Analyzing the Impact of Record Counts on Model

In this experiment, we will train our model on different records count. First we will split
our data into train and test samples. Then we will train our models using different record

46

Figure 3.9: MAE for classical algorithms on raw charges dataset and different records count

counts from the train set and test them on the separated test set.
Goal of this experiment: The goal of this experiment is to examine how well each

algorithm can handle dataset size. This can help us determine the minimum amount of data
needed to reach an acceptable accuracy, while saving computational time.

Figure 3.9 shows the result as a line graph for classical machine learning performance
among different records count when building those algorithms on raw dataset. Each step we
increased the records count for the training set to check the performance of each algorithm
and how its performance gets affected with the dataset size. Linear regression showed rela-
tively higher MAE values across all record counts, indicating less precise predictions, while
increasing the record count did not improve the performance of the model, which might
suggest a limitation in capturing the underlying pattern. In contrast, as the record count in-
creases, certain models such as the XGB, decision tree and random forest exhibit a relatively
stable or slightly improving MAE. KNN, initially exhibited a decrease in MAE, indicating
an improvement in performance. However, as the data size increased, the performance began
to fluctuate, and a consistent decrease in MAE was not observed. This test gives us insights
that XGB and random forest may handle larger dataset in a better way among other algo-
rithms. Overall, the trend of performance for all algorithms are close to each other, and it
needs further data processing and feature engineering

47

Figure 3.10: MAE for different features selected by SelectKBest

Enhancing Model Accuracy with Service-Related Feature Integration

In this experiment, we will merge data from additional files that contain customer service-
related information, such as area, meter amp phase class, among others. These features
represent informative features about the meter and the customer service information. The
features are facilityType, subBranch, phasesAMPClass, areaID, facilityGroupID. Also, we
will build our classical models by selecting different number of features. We will select these
features by using selectKBest method from sklearn [51]. Our approach involves executing
a loop that iterates from 1 to the total number of available features. In each iteration, we
utilize the SelectKBest method to identify and select the most impactful features with the
highest relevance to our target variable. For each iteration, we will monitor the MAE value
to determine the optimal set of features for building our model

Goal of this experiment: The goal of this test to see how each model will perform
when adding more informative features like merging service related data

From Figure 3.10, we can notice the following observations:

• Impact of Feature Selection: As the number of informative features increases, there
is a general trend of decreasing MAE for most algorithms, indicating that incorpo-
rating more informative features may “but not necessary” improves model accuracy.

48

Figure 3.11: Feature importance following the integration of service-related features

49

Improving the performance or decreasing it depends on the added features and the
used algorithm.

• Algorithm Sensitivity to Feature Selection: Methods such as Random Forest and XG-
Boost show a particularly strong response to increasing feature consistently reducing
the MAE as more features are taken into account. This reflects its power and ability
to leverage a wide range of features effectively. On the other hand, linear models,
including linear regression and lasso regression, show consistent but more moderate
improvements. It is worth noting that the performance of the K-Nearest Neighbors
(KNN) algorithm initially fluctuates but stabilizes and improves later, indicating a
threshold effect where a certain number of features is necessary for the algorithm to
efficiently capture underlying patterns. Similarity in performance trends between XG-
Boost and Lasso-XGBoost across the board the k values are particularly interesting,
indicating that Lasso regularization did not significantly affect feature selection in XG-
Boost for this dataset.

Advancing Model Predictions through Feature Extraction and Engineering

In this experiment, we will apply feature extraction and engineering to extract new features
depending on our observations as mentioned in section 3.2.4

1. Feature Extraction: We introduced four new features — "dayOfPre", "monthOfPre",
"month", and "dayOfWeek" — derived from the "previousChargingDate" and "pay-
mentDate" fields, as these are date fields that cannot be directly utilized in the model.
These features represent the day and month of the previous charge, the month of the
current payment, and the day of the week, respectively. Additionally, we attempted
to encode these date fields into Unix timestamps, transforming them into a numerical
format that represents the number of seconds since January 1, 1970. However, this
encoding approach led to a decrease in the model’s performance, indicating that the
direct conversion of date fields into Unix timestamps might not capture the temporal
relationships and patterns effectively for our specific modeling task.

2. Following insights from section 3.2.4, we developed additional features including:

(a) previousChargeColdnessRate, coldnessRate: Based on Figure 3.7 that illustrates
the mean average for customers recharging over months. We divided the months
into three categorical months based on the plot.

50

(b) customerAVG: this feature represents the average number of days it takes for each
customer to recharge. It’s calculated as a mean value of the total days between
recharges for each customer, offering a personalized measure of recharge frequency.

(c) branch_area_avg_category: this feature is a categorical representation based
on the average recharge frequency, grouped by customer location, which includes
branch, sub-branch, and area levels. The creation of this feature involved several
steps:

(d) First, we computed two statistical measures for each geographical area defined by
combinations of branchID, subBranchID, and areaID: the trimmed mean and the
interquartile range (IQR) of ’customerAVG’. The IQR was chosen for its robust-
ness in calculating an average that mitigates the influence of outliers. ii. We then
categorized each area into predefined bins based on its trimmed mean recharge
frequency, creating a categorical feature that reflects the regional variation in
recharge habits

(e) RechargeIntervalFactor (RIF): this feature is designed to capture variations in
recharge behavior by considering both the amount recharged and the time interval
between recharges. The feature is calculated by taking the total quantity of
purchased electricity (in kilowatt-hours, kWh), dividing it by the quantity of
electricity for the previous charge, and then multiplying by the number of days
since the last charge (daysSinceLastCharge) as per the following equation:

RIF = (KWi

KWi−1

) × daysSinceLastCharge (3.1)

After performing feature selection and engineering, we build the models again and the
results were as shown in Table3.10:

Algorithm Raw Data After Merging Service Info After Merging and Engineering

Linear 7.22 6.99 4.64
Polynomial 7.00 6.65 4.20
XGB 6.49 5.93 3.65
Decision Trees 6.63 5.98 4.88
Random Forest 6.50 5.81 3.74
KNN 7.26 6.12 4.12

Table 3.10: MAE results for classical ML on various features sets

51

Figure 3.12: Classical ML MAE results on various features set

Figure 3.12 visually compares the Mean Absolute Error (MAE) of various machine learn-
ing algorithms across three different stages of data processing: using the raw dataset, after
merging service information, and after performing merging and feature engineering as de-
scribed previously. The results confirm that across all algorithms, there is a noticeable
reduction in MAE as we move from using the raw dataset to applying additional data pro-
cessing steps. This trend highlights the significant impact of feature engineering on model
performance. Overall, each algorithm shows improvement in MAE after merging service
related information like service location, meter amp phase class and other, and also further
improvement after additional feature engineering features. This suggests that the added
data and engineered features are providing valuable information that helps the models make
more accurate predictions

Model Performance through Strategic Training Data Selection

The dataset we have is sorted by the customer number and payment date. The customer
number in the dataset represents the location (geographical region) for the service. So,
splitting the data without shuffling may affect the performance of the model. Hence, we run
our classical algorithms for the same dataset but once in a sorted dataset, and the other is

52

Figure 3.13: Classical machine learning MAE comparing selecting single governorate in
training VS all governorates

by shuffling the data.
Goal of this experiment: the goal of this experiment is to examine the importance

diversity and representation in training predictive models, and to examine if taking random
data from same governorate is enough or should consider taking data from all governorates

As Figure 3.13 shows, all algorithms perform better when including data from multiple
governorates rather than on the governorate-specific training set. This suggests that the
governorate-specific model may not generalize well across different governorates, indicating
significant regional variations in electricity charging patterns that are not captured when
the model is trained on data from a single governorate. It also suggests the importance of
considering geographical (or regional) features as part of the model. It implies that models
can benefit from understanding regional differences, which could be encoded explicitly as
features or captured through more complex, regionally stratified model training approaches

3.3.4 Deep Learning: Emphasizing Recurrent Neural Networks

In this section, we will develop our model using RNNs. RNNs are a category of deep
learning algorithms that offer certain advantages over classical machine learning algorithms,
especially for processing sequential data. This makes them particularly well-suited for time-

53

series applications. Unlike classical models, RNNs possess a form of memory that enables
them to retain information from previous inputs. This feature is beneficial for making
predictions based on historical data, which is relevant to our problem and dataset.

Our approach integrates methodologies from classical machine learning models, adapted
for use with recurrent neural networks (RNNs). Initially, we will develop the model using only
the charging dataset. We plan to subsequently enhance the model by incorporating additional
features related to the service area and other relevant information from supplementary files,
as described in the section 3.3.3. These features, similar to those used in classical machine
learning, will be incorporated into RNN models. After incorporating these features, we
will perform a comparative analysis to assess the model’s performance at various stages.
This iterative process enables us to evaluate the influence of additional data on the model’s
predictive accuracy, thereby allowing us to refine our strategy for optimal results.

Furthermore, the performance of RNN models is influenced by various hyperparameters,
such as the selection of window size (time step), the loss function used in the training
process, model architecture, among others. Therefore, we will conduct experiments to search
for the optimal values for these hyperparameters to achieve the best performance. This
involves systematically adjusting and evaluating the impact of different hyperparameters
on the model’s accuracy and efficiency, allowing us to fine-tune the RNN to our specific
requirements and data characteristics.

Evaluating Recurrent Layer Architectures

Goal of this experiment: The goal for this experiment is to find the layer type for our
predictive model.

In this round, we will build the RNN model architecture that will be used to handle our
problem. RNN has multiple layer types that differ in their implementation and purpose.
There are three types (SimpleRNN, LSTM, GRU) that can handle regression problems.

We constructed the model employing various types of recurrent neural networks and
discovered that the SimpleRNN was marginally quicker to train, taking approximately 3
hours and 50 minutes, in contrast to LSTM and GRU models. However, it was less accurate.
Meanwhile, the performance outcomes of LSTM and GRU models were nearly identical, with
both requiring about 4 hours and 8 minutes to train. This indicates that while SimpleRNN
offers a time advantage, LSTM and GRU provide a better balance between training duration
and accuracy, making them potentially more suitable for applications where model precision
is critical. And, since LSTM can capture more complex patterns, and the payment of the

54

customer can be affected with long-term trends, season, weather, or customer social life, we
will focus on using LSTM as our recurrent layer type.

Hyperparameter Optimization

RNN has multiple hyper parameters that are passed when building the models. Each layer
can have different hyper parameters with different values. These hyper parameters affect the
performance of the model dramatically since it affects how the model runs and learn from the
training data. Finding hyper parameters is a crucial process that needs a lot of experiments,
so there are multiple ways to accomplish it. First method is by manually trying different
hyper parameters for each layer. This method is a time consuming and subject to human
error. The second method involves using grid search, by defining a list of values for each hy-
per parameter, then iterating over every single value to log the model’s performance results
for each configuration built with those values. The third method, in principle, is similar to
the second method, but it simplifies the process by avoiding the need for detailed coding and
configurations. This is achieved through the use of a library named "RandomSearch," which
provides a mechanism similar to the grid search approach but selects hyperparameters at
random to evaluate the model’s performance. This is done by define the range of values for
each parameter, and the library will build and log the results for each run, and gives us the
best hyper parameters achieved from the results. In our implementation, we experimented
with all these methods and concluded that "RandomSearch" is the most effective approach.
It offers time efficiency and a lower likelihood of errors. We utilized RandomSearch to ex-
plore various parameters, including the number of units in each layer, the ratios of L1 and L2
regularization, the dropout ratio for each dropout layer, and the learning rate. This method
allowed us to efficiently identify optimal configurations without the exhaustive process re-
quired by grid search. So, after utilizing the Random Search approach to determine the
RNN model architecture, the following RNN model architecture was obtained as best suited
our problem:

55

Figure 3.14: RNN architecture after hyperparameters optimization

56

The model consists of the following layers and components:

• Sequential Model: The model is a sequential model, which means that the layers are
stacked linearly.

• Input Layers:

– The Masking layer here acts as the input layer. The masking layer purpose is to
handle zero padding records for records who doesn’t have the required window
size

– units=112: This LSTM layer has 112 units. Each unit is a cell in the LSTM layer.

– input_shape=(9, 24): This specifies the shape of the input data. Since it’s an
LSTM layer, the input shape would be (time steps, features). This input shape
could be changed for better performance. Samples of data are listed in Table 3.4.

• Dropout Layer:

– Dropout (0.16): This layer randomly sets a fraction (16% here) of the input units
to zero at each update during training, which helps prevent over fitting.

• Additional LSTM Layers:

– Two more LSTM layers with 32 units each.

– Each LSTM layer is followed by a Dropout layer (20% and 10% dropout rates,
respectively) for regularizing the model.

• Dense Layers for Processing:

– Dense(units=256): This is a fully connected layer with 256 units. It is used
for further processing and pattern recognition after the sequence data has been
processed by the LSTM layers.

• Output Layer:

– Dense(units=1): The final layer is a Dense layer with a single unit. This config-
uration because our model is designed for regression

RNN configuration:
In addition to the RNN structure, the following configuration were obtained by performing
Random Search for hyperparameters:

57

• kernel_regularizer=regularizers.l1(l1=0.0001): This adds L1 regularization to the first
LSTM layer, which can help prevent overfitting by adding a penalty to the loss function
based on the magnitude of the weights

• Adam optimizer with a learning rate of 0.0001.

• The loss function is Mean Squared Error (MAE). We used both MSE and MAE for
most tests

• EarlyStopping(monitor=’val_loss’, patience=5): It will stop the training process if the
validation loss does not improve for 5 consecutive epochs, helping to prevent overfitting
and may also save training time.

Data input:
Initially, the dataset is divided into two distinct subsets: 80% of the data is allocated for
training purposes, with 20% of this training set further reserved for validation purposes,
and the remaining 20% is set aside for testing. Following this, the input features (X) are
standardized using StandardScaler. Standardization is an important preprocessing step,
especially for RNNs, as it transforms the features to have a mean of zero and a unit variance.
After that, RNN models requires data to be in a shape of (time steps, features) as shown in
Table 3.4. Time steps is a variable represents how much records the model will look back
to predict the future. This variable could be tuned in building the model to enhance the
performance and may affect the performance directly. Features represent how many features
that will be fed to the model to be trained. In the next rounds, we will experiment different
features and time steps to select those how give best performance.

Impact of Record Volume on Model Efficacy

In this experiment, we will try to train our model based on different number of dataset sizes.
We split our dataset into train and test set by loading the whole dataset, and then train our
model by slicing the train set based on the record count.

Goal of this experiment: The goal of this experiment is to examine the importance of
having more training data for the model. Determining the minimum amount of data required
for the model to reach an acceptable level of accuracy. It is particularly useful when data
collection (or training) is expensive or time-consuming.

Figure 3.15 shows that the model is learning to predict more accurate predictions when
having more training samples. This means that more data generally improves the perfor-

58

Figure 3.15: MAE performance of RNN For shuffled data over different record count on raw
features

59

mance, since our model seems to benefit from larger datasets, as indicated by the decreasing
MAE values. However, the rate of improvement decreases as the dataset size increases. The
results also show that we reached “Point of Diminishing Returns”, which means that the
model improves slightly smaller enhancements by adding more records. This could give us
that having 200K or 400K of records could be enough for training the data if we are having
a limitation in computational power or struggling with a long time for the training process.
Despite that, the model continued to improve even with slight improvement.

Feature Selection and Engineering for Model Improvement

In this experiment, we will build our model by using only one feature as a baseline. After
that, we will add the features related to customer service, and see how they affect the
performance of the model. Then, we will also add engineered features and see their effects
in the overall performance of the model. Each set of features will be examined alone and
together. Finally, we will apply PCA technique to try to enhance the results.

Goal of this experiment: The goal of this experiment is to try to figure out the suitable
sets of features and how the model gets affected by adding each set of features.

Raw Dataset After Merging Service Info After Merging and Engineering

RNN LSTM 4.52 4.67 3.09

Table 3.11: MAE performance for RNN LSTM after merging service data and feature engi-
neering

Table 3.11 shows how the model performance performed after merging service-related
information. The results from our model demonstrate the significant impact of data pre-
processing and feature engineering on model performance. Initially, when the model was
trained on the raw dataset, the MAE was recorded at 4.52. This initial performance serves
as a baseline for understanding the model’s capability with raw charging data. After merging
the customer service info features, there was a slight increase in the error, rising to 4.67. This
decrease of performance shows that RNN model doesn’t improve for service information as
classical machine learning algorithms do. This could be related to the nature of data, because
RNN are particularly well-suited for sequential data where the order and context matter sig-
nificantly, such as time series. Meanwhile, the table also shows a noticeable enhancement
when adding engineered features since most of the new features represent sequential data.

We did further investigation to see the effect of features by dividing the features into

60

informative groups and make test for each set of features individually and together as the
following:

• Single Feature (baseline): From the dataset, we extracted a feature named "daysSince-
LastCharge," which represents the number of days between the current charge date and
the previous charge date. This feature demonstrates a sequential pattern in customer
behavior, as it indicates the number of days between each charge and the preceding
one. Given that our problem is sequential problem, we conducted experiments focusing
solely on the "daysSinceLastCharge" feature to assess the model’s performance based
on this single input. This approach serves as a baseline for our feature experimenta-
tion. We trained our model using the "daysSinceLastCharge" feature as input and our
designated target feature as output, utilizing all available records in the dataset. The
MAE for this test was 3.9, providing an initial indication of the predictive accuracy of
the model.

• Sequential features: This test is to check the influence of sequential features in the
RNN. These features represent the number of days between previous and current
charge, the day and the month for both previous charge and current charge. Adding
temporal features related to dates (’dayOfPreviousCharge’, ’monthOfPreviousCharge’,
etc.). decreases the MAE to 3.4. This suggests that incorporating more detailed time-
based context helps the model make more accurate predictions.

• Sequential and statistical features: We added statistical features that represent the
mean average for the customer to recharge, a categorical to his mean average, a cat-
egorical for the month of the current and previous charge. Incorporating statistical
features (like ’coldnessRate’, ’previousChargeColdnessRate’, etc.) further reduces the
MAE to 3.2. It indicates that these features provide information that helps the model
understand the patterns and behavior of customer recharging better.

• Sequential, statistical and geo features: We added features that demonstrate the cus-
tomer meter location. Adding geographical features (like ’branchID’, ’subBranch’,
’areaID’) slightly increases the MAE to 3.1. This minor increase suggests that while
the area features might provide some contextual information, they might not be as
predictive or might introduce some noise compared to the previous set of features.

• Sequential, statistical, area and financial features: We added features that demonstrate
the financial details of the customer charges. Finally, including financial features (’pay-

61

Figure 3.16: RNN performance for different features set

mentAMT’, ’KWAmount’, ’tarrifID’) reduces the MAE to 3.0. This is the lowest MAE
observed, indicating that financial features, when combined with the other types, pro-
vide more information that contributes to making the most accurate predictions.

Figure 3.16 shows the results for running these tests. It shows that RNN performance
improved by incorporating more informative features, but if we compare it with classical
machine learning, the performance is relatively small for some set of features, which shows
that RNN is less sensitive to certain types of features.

We also implemented PCA to attempt to improve our model’s performance by reducing
the dimension of the input features. We employed two approaches: the first by selecting
components that account for 95% of the total variance, while the second approach involved
selecting a fixed number of principle components. Table 3.12 shows the results of running
PCA which indicates top result for retrieving 95% of variance which is a close result to use
all features from previous test.

62

PCA Number of Components

95% of total variance 5 Components 10 Components 15 Components

MAE Value 3.15 3.44 3.27 3.18

Table 3.12: Impact of PCA components on MAE value

Loss Function Analysis

In this experiment, we will use different types of loss functions in the training process. The
loss function helps the model to evaluate its performance and try to enhance its performance
by adjusting its weights and units depending on the result from the loss function.

Goal of this experiment: The goal of this experiment is to examine the performance
of the model by using different loss functions and to find the most suitable loss function for
our model.

We trained our model using five different loss functions using 100K of the dataset for
faster training. The first experiment was built using mean absolute error (MAE), which is
less sensitive to outliers. The second is by using mean squared error (MSE), which emphasizes
larger errors by squaring them. Third is by using root mean square error (RMSE) which
is similar to MSE but used when large errors are not desired. Fourth experiment was built
using Huber Loss, which is a combination of MSE and MAE. Huber is smooth for small
errors and linear for large ones. Fifth is by using Log-Cosh Loss, which offers a balance
between MSE and MAE.

Loss function MAE MSE RMSE Huber Log-Cosh

MAE Value 3.21 3.28 3.30 3.19 3.20

Table 3.13: Comparison of MAE values for different loss functions

By running all the mentioned loss functions, we noticed that the model has close test
results, where the MAE falls between 3.28 for MSE to 3.19 for Huber as shown in Table 3.13

Activation Functions and the Role of Non-Scaled Features

Goal of this experiment: The goal for this experiment is to evaluate the effect of different
activation functions on all dense layers.

63

Our model consists of two dense layers. The first layer serves as the basic input for the
feature transformation and learning process, using the “ReLU” activation function. Mean-
while, the output layer uses a “linear” activation function, as used in all previous tests. We
defined an array with the activation functions we need to test and performed a loop through
it to test various types of activation functions for both layers. Also, we examined both dense
layers and activation functions while scaling target feature and keeping it in raw form. The
results indicated a decrease in model performance, as shown in Table 3.14 for using linear
activation in the output layer, and nonlinear for first dense layer:

Output Activation Function Activation Function for Dense Layer 1

ReLU SoftPlus Linear

ReLU 5.22 5.21 5.17
SoftPlus 5.17 5.20 5.19
Linear 3.34 3.28 3.32

Table 3.14: RNN performance for different activation functions, target feature scaled

Additionally, we performed the same tests to assess the impact of retaining features in
their "raw form." The first test involved using our target feature as is, while the second test
involved leaving all features (X and Y) in raw form. We executed both tests using various
activation functions: Linear, ReLU, and SoftPlus. The results indicated that keeping the
target feature in raw format results in less sensitive to activation function type. Table 3.15
illustrates the results

Output Activation Function Activation Function for Dense Layer 1

ReLU SoftPlus Linear

ReLU 3.24 3.26 3.32
SoftPlus 3.27 3.29 3.30
Linear 3.23 3.26 3.27

Table 3.15: RNN performance for different activation functions, target feature raw form (not
scaled)

Optimizing Temporal Dependency Capture through Window Size Tuning

RNN LSTM shape consists of time steps and feature count. Time steps are a number that
helps the model to capture temporal dependencies. It tells the model how many steps it

64

should look back to predict the future. The following figure illustrates how window size
works. Each box in Figure 3.17, illustrates records for the same customer with window size
of 3 steps (3 window size).

This parameter can change the model performance dramatically. Finding the best window
size is an empirical process. So, we conducted a loop mechanism to evaluate the performance
of the model for different values of window size.

First, we need to take into consideration that our problem depends on customer behavior
and patterns, and the dataset consists of multiple records for the same customer. So, it
is necessary to maintain the sequence integrity for each customer during creating the time
steps. Also, we must sort the sequence by customer and payment date to ensure that the
sequence steps go from older charges to newer charges.

Furthermore, we address the issue of insufficient records for some customers relative to
the chosen window size. To handle this, we adopt a padding mechanism to pad customer’s
charges that have less than window size plus one. We did that through applying two key
modifications:

1. Adding zeros at the start of each customer sequence (as shown in Table 3.16). This
process can ensure that all customers are included in the training and testing process,
despite their records counting in the dataset.

2. Adding a masking layer with a mask value of zero, which can handle the zero padding
in the first step, so it lets the model handle these zeros and won’t get affected by the
training or testing

Original Customer Charge Data Adjusted Charge Data with Padding

[159, 50, 3] [0, 0, 0]
[159, 70, 6] [0, 0, 0]

[159, 50, 3]
[159, 70, 6]

Table 3.16: Customer charges before and after padding for window size 3

From Figure 3.18, it is noticeable that increasing the window size from 1 to 35 shows a
trend of decreasing error, indicating that providing more historical data points (time steps)
can enhance the model’s performance. Based on the results, we continued to expand the
window size to see if the model’s performance would continue to improve. However, as shown

65

Figure 3.17: RNN window size of 3 demonstration

66

Figure 3.18: MAE RNN performance for different window size

67

in the figure, beyond a certain window size, the model’s performance ceased to improve and
began to decline. This decline could be a sign of introducing noise or feeding irrelevant
information to the model due to the lengthy sequence. On the other hand, selecting large
window size will take higher computational power and memory which could be an issue for
certain situations.

Efficacy of Segmented Model Training Versus Generalized Approaches: A Com-
parative Study

In this experiment, we conduct tests on the training datasets using various data splitting
strategies to explore the impact of segmentation on model performance. Initially, models
will be trained using data segmented by specific criteria, such as facility type and geograph-
ical location, and then tested on same segments criteria. This approach allows for a direct
comparison between models trained on homogeneous versus heterogeneous data sets. Sub-
sequently, the entire dataset will be shuffled to eliminate any segmentation, and the model
will be retrained and tested using the same evaluation criteria as before.

Goal of this experiment: The goal is to examine whether building separate models
for each group of facilities or each governorate can enhance model performance, compared
to training a single model on data aggregated from all segments. This comparative analysis
seeks to identify the benefits, if any, of targeted model training on segmented datasets in
improving the accuracy and effectiveness of predictive outcomes.

Training Segment Testing Segment Mean Absolute Error
Residential Residential 2.51
Commercial Commercial 1.46
Temporary Temporary 1.94
Specific Governorate ID 35 Specific Governorate ID 35 2.77
Specific Governorate ID 70 Specific Governorate ID 70 2.12
All (Shuffled) Residential 2.56
All (Shuffled) Commercial 1.33
All (Shuffled) Temporary 1.62
All (Shuffled) Specific Governorate ID 35 2.63
All (Shuffled) Specific Governorate ID 70 2.08

Table 3.17: Comparison of Model Performance: Segregated vs. Aggregated Training

Table 3.17 illustrate a slight improvement achieved by segmenting the training model by
facility type for residential facilities and testing it on the same criteria. Meanwhile, all other

68

tests demonstrated better or equivalent performance when the model was trained using an
aggregated approach.

69

3.4 Evaluation of Prediction Models using the Differen-

tial Penalty Score (DPS)

3.4.1 Purpose of the DPS Metric

The Differential Penalty Score (DPS) is a custom evaluation metric designed to assess the
performance of NCDP, since accurately forecasting future events is critical to avoiding neg-
ative outcomes. In the context of predicting the next charge date for prepaid electricity
meters, the DPS metric aims to quantify the effectiveness of different algorithms in fore-
casting the time until a customer’s next charge with an emphasis on penalizing prediction
errors asymmetrically. This asymmetric penalty approach is motivated by the operational
necessity to minimize the risk of electricity cutoffs due to meter credit running out, which
can result from underestimating the time until the next recharge.

3.4.2 DPS Formula

The DPS is calculated using the following formula, which applies different weights to over-
estimations and underestimations:

P (yi, ŷi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a × (ŷi − yi) if ŷi > yi,
b × (yi − ŷi) if ŷi ≤ yi.

(3.2)

DPS = 1

N

N

∑
i=1

P (yi, ŷi). (3.3)

where:

• yi is the actual number of days until the next charge for the i-th observation.

• ŷi is the predicted number of days until the next charge for the i-th observation.

• a is the penalty weight for overestimation.

• b is the penalty weight for underestimation, typically greater than a to reflect the
higher cost of underestimations.

• N is the total number of observations.

70

The term 1/N in DPS formula serves to normalize the total penalty across all observa-
tions, making the DPS an average penalty per observation. This step is important to make
the DPS becomes comparable across datasets of different sizes. Without normalization,
larger datasets would naturally tend to have larger total penalties simply because they have
more observations, not necessarily because they have worse predictive performance.

3.4.3 Comparison of Model Performances

The DPS was calculated for all predictive models used in NCDP to evaluate their perfor-
mance in estimating the next charge date for prepaid electricity meters.

Table 3.18 indicates that RNN and XGBRegressor models exhibit the lowest DPS val-
ues, signifying their superior performance in predicting the days until the next charge with
minimal risk of underestimating, this reduces the possibility of power outages due to meter
credit running out.

Model Differential Penalty Score (DPS)
Linear Regression 6.82
Lasso Regression 6.87
Polynomial Regression 6.43
Decision Tree 8.03
Random Forest 5.91
XGBRegressor 5.37
Lasso XGBRegressor 5.37
Deep Learning RNN 3.56

Table 3.18: Comparison of DPS across different predictive models.

71

Chapter 4

Analysis of result and Discussion

This thesis aimed to examine using classical machine learning and deep learning models in
predicting the next charge date for prepaid meters, while focusing on prepaid electricity me-
ters. We focused on analyzing customer historical patterns and service geographical location
(i.e., spatio-temporal data) to extract specific and common patterns among the customers
to perform our task. As a start to our research, we implemented multiple classical machine
learning algorithms to perform our task. We started by training the algorithms based on
raw charges dataset as a baseline to our models, as described in section 3.3.3. The results
show all algorithms have relatively close scores, with an average of 6.8 of MAE. This result
illustrates that building our task using only raw charges dataset will yield to high range of
error value since 6.8 MAE can be very high for our predictive task. So, we merged service re-
lated information to the dataset by merging it to the charges dataset. The new merged data
contains geographical location information for the service like “city, area”, and information
about the meter class like number of phases and amperes. Merging these features resulted
in a slightly better performance for the algorithms with an enhancement about 0.7 MAE.
These results illustrate that we need further features engineering to reach an accepted score.
For that, we performed feature extraction and engineering to extract new features. This
step led to a significant improvement in the model’s performance, as illustrated in Table 13.
The results showed a notable reduction in error metrics, with the XGBoost (XGB) model
achieving the lowest scores: a Mean Absolute Error (MAE) of 3.65, Mean Squared Error
(MSE) of 53.32, and Root Mean Square Error (RMSE) of 7.30. Following closely was the
Random Forest model, which recorded an MAE of 3.74, MSE of 55.37, and RMSE of 7.44.
These results highlight the effectiveness of refining our approach and the impact of feature
selection on enhancing predictive accuracy.

72

Second, we implemented a deep learning approach using RNN to build our predictive task.
Initially, we followed the same steps in classical machine learning, as we started with raw
charges dataset to be a baseline for building the model. The result shows better performance
comparing it with classical machine learning with an MAE of 4.5. Moreover, we performed
training the model based on single governorate and test on all governorates. We found that
training on single governorate will yield to unstable performance as shown in Figure 20, and
when training by multiple governorates, the model will have a stable robust performance.
In addition, we also performed merging and feature extraction and engineering. Our finding
for this test showed that RNN performance enhances with more informative features, but it
improves less than classical machine learning compared to raw charges features. Moreover,
RNN are highly sensitive to time steps (window size) parameter. Altering this parameter
changes the performance dramatically as shown in Figure 23, while it shows an improvement
of performance by more than 50% between using 1 window size to 35 window size, with a
result of improvements from 4.2 to 2.0 MAE. This test illustrates that using bigger window
size can lead to more effective performance and accurate prediction. Also, we have experi-
mented the effect of using different types of activation functions for the dense layers in the
model, and found that using “relu” for first layer, and “linear” for output dense layer gives
best performance, while using any other activation function for the output layer gives worse
result. Also, scaling the target feature plays important role in affecting the performance of
the model. We also run several experiments on scaled and non-scaled target feature, along
with selecting different activation function, and the results shows that scaling the target fea-
ture needs to carefully select the dense layers activation functions, while keeping the target
feature non scaled, reduce the importance of the activation function type.

These experiments collectively indicate that model performance is sensitive to dataset
size, feature selection, data sorting methods, window size for time steps, and activation
functions in layers. The best outcomes were achieved with larger datasets, comprehensive
feature sets, shuffling techniques, and particular activation function configurations.

In addition, for the evaluation of predictive models using the newly introduced DPS
metric function, the RNN method demonstrates superior performance over classical machine
learning algorithms. As illustrated in Table 3.18, the RNN achieves the lowest DPS value of
3.56, indicating a significantly enhanced ability to predict the next charge date for prepaid
electricity meters with minimal risk of underestimation.

73

As a summary for classical machine learning compared to deep learning approach using
RNN, we can find that RNN performance has outperformed classical machine learning in
all experiments. Also, RNN can give more accurate predictions by increasing time step
(window size), where this parameter doesn’t exist in classical machine learning algorithms.
Meanwhile, classical machine learning algorithms are simpler, and need much less time for
training and testing. Figure 4.1 shows a bar chart to compare the performance of the classical
machine learning algorithms compared to RNN. The results are by applying final features
set, and using time step of 35 for RNN.

Figure 4.1: RNN VS classical machine learning algorithms performance

74

Chapter 5

Conclusion

This thesis has successfully demonstrated the application of both classical machine learn-
ing and advanced deep learning techniques in predicting the next charge date for prepaid
electricity meters. The experiments conducted revealed key insights: larger datasets signifi-
cantly improve the model’s accuracy, and feature engineering plays a crucial role in enhancing
prediction capabilities. The tests with different splitting methods for training data are im-
portant, feature subsets, and window sizes for time steps provided valuable insights into
optimizing the model’s performance.

The deep learning approach, especially with tuned hyperparameters and activation func-
tions, showed promising results, outperforming classical models in certain configurations.
However, classical machine learning models still hold value due to their simplicity and effec-
tiveness with smaller or less complex datasets. In the other hand, while classical machine
learning results were promising, RNN can work with fewer features and still give an accepted
performance, while classical machine learning algorithms needs more features to perform less
accurate predictions compared to RNN.

In conclusion, this thesis has demonstrated the utility of machine learning for predicting
recharge times for prepaid meters, answering key questions about the application of these
technologies. It was found that historical usage patterns, service-related data and the geo-
graphical location for the customer can significantly enhance model accuracy, highlighting
the importance of feature engineering. Among tested algorithms, deep learning, particularly
RNNs, showed notable performance, even with minimal features, compared to traditional
machine learning models.

75

5.1 Future Work

Future work can explore the integration of these models into real-world applications, further
enhancing the operational efficiency and customer experience in the utility sector. It also
can include building and testing the model using datasets from different utility services such
water or gas services, exploring different features such as weather, global or country major
situation. Also, an experiment with newer or more complex deep learning architectures to
improve prediction accuracy may be consider as a challenge for future works.

76

Bibliography

[1] A. Eliasy and J. Przychodzen, “The role of ai in capital structure to enhance corporate
funding strategies,” Array, vol. 6, p. 100017, 2020.

[2] W. Commons, “File:recurrent neural network unfold.svg — wikimedia commons, the
free media repository,” 2022. [Online; accessed 17-February-2023].

[3] International Energy Agency, Energy Access Outlook 2020: From Poverty to Prosperity.
Paris: IEA, 2020.

[4] S. Horsley, “Millions at risk of losing power over unpaid bills,” mar 2021. [Accessed 09
Apr 2023].

[5] H. K. Trabish, “Utility customers owe up to $40b in covid-19 debt, but who will pay
it?,” Utility Dive, Dec. 2020. [Accessed 9 Apr 2023].

[6] IMARC Group, “Prepaid electricity metering market: Global industry trends, share,
size, growth, opportunity and forecast 2022-2027,” 2022.

[7] J. S. Jones, “Over 31.3 million smart meters in gb,” Mar. 2023. [Accessed 07 04 2023].

[8] M. Gocken, M. ÖZÇALICI, A. B. İpek, and A. Dosdoğru, “Integrating metaheuristics
and artificial neural networks for improved stock price prediction,” Expert Systems with
Applications, vol. 44, 2015.

[9] K. Coussement and K. D. Bock, “Customer churn prediction in the online gambling
industry: The beneficial effect of ensemble learning,” Journal of Business Research,
vol. 66, p. 1629–1636, 2013.

[10] P. R. Hoban and B. a. R. E., “Effects of internet display advertising in the purchase
funnel: Model-based insights from a randomized field experiment,” Journal of Marketing
Research, vol. 52, 2015.

77

[11] Vakratsas, T. D., and Ambler, “How advertising works: What do we really know?,”
Journal of Marketing, 1999.

[12] H. a. K. Li and PK, “Attributing conversions in a multichannel online marketing envi-
ronment: An empirical model and a field experiment,” Journal of marketing research,
vol. 51, pp. 40–56, 2014.

[13] X. Shao and Lexin, “Data-driven multi-touch attribution models,” in Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 258–264, 2011.

[14] E. D. Ocansey", title = "Using Machine Learning to Predict Customers’ Next Purchase
Day, “Using machine learning to predict customers’ next purchase day,” 2021. [Online;
accessed 17-February-2023].

[15] R. Berman, “Beyond the last touch: Attribution in online advertising,” Marketing Sci-
ence, 2018.

[16] T. W. Klug, A. D. Beyene, T. H. Meles, M. A. Toman, S. Hassen, M. Hou, B. Klooss,
A. Mekonnen, and M. Jeuland, “Pre-paid meters and household electricity use be-
haviours: evidence from addis ababa, ethiopia,” Energy Policy, p. 113226, Jan. 2022.

[17] M. AbuBaker, “Data mining applications in understanding electricity consumers’ be-
havior: A case study of tulkarm district, palestine,” Energies, vol. 12, 2019.

[18] Wikipedia contributors, “Jerusalem district electricity company — Wikipedia, the free
encyclopedia,” 2022. [Online; accessed 17-February-2023].

[19] A. Casarin and L. Nicollier, “Prepaid meters in electricity. a cost-benefit analysis,” 2008.

[20] L. Franek, L. Šastný, and P. Fiedler, “Prepaid meters in electricity. a cost-benefit anal-
ysis,” IFAC Proceedings Volumes, vol. 46, no. 1474-6670, pp. 428–433, 2013.

[21] H. Tech, “Utility meter,” apr 2023. [Accessed 09 Apr 2023].

[22] Hexing, “Utility meters,” 2023. [Accessed 09 Apr 2023].

[23] Conlog, “Conlog tech,” 2023. [Accessed 10 Apr 2023].

[24] G. Ian, Y. Bengio, and C. Aaron, Deep learning. MIT press, 2016.

78

[25] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep patient: An unsupervised rep-
resentation to predict the future of patients from the electronic health records,” Nature
Publishing Group, vol. 8, pp. 1–10, 2018.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, 2015.

[27] L. Hardesty, “Explained: Neural networks.” MIT News Office, 2017.

[28] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long short-term
memory (lstm) network,” Physica D: Nonlinear Phenomena, vol. 404, 2020.

[29] K. Cho, B. v. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical
machine translation,” in Proceedings of the Association for Computational Linguistics,
pp. 1724–1734, 2014.

[30] A. Gaikwad, The Fundamentals of Machine Learning. LAP Lambert Academic Pub-
lishing, 2023.

[31] P. Vasant, G. Weber, J. Thomas, J. Marmolejo-Saucedo, and R. Rodriguez-Aguilar,
Artificial Intelligence for Renewable Energy and Climate Change. Wiley, 2022.

[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[33] A. Botchkarev, “A new typology design of performance metrics to measure errors in ma-
chine learning regression algorithms,” Interdisciplinary Journal of Information, Knowl-
edge, and Management (IJIKM), vol. 14, pp. 045–076, 2019.

[34] V. N. Gudivada and C. Rao, Chapter 8 - Machine Learning, pp. 197–228. Elsevier,
2018.

[35] E. Ostertagova, “Modelling using polynomial regression,” Procedia Engineering, vol. 48,
p. 500–506, 12 2012.

[36] P. D. Reddy and L. R. Parvathy, “Prediction analysis using random forest algorithms
to forecast the air pollution level in a particular location,” in 2022 3rd International
Conference on Smart Electronics and Communication (ICOSEC), pp. 1585–1589, 2022.

[37] L. Rokach and O. Maimon, “Decision trees,” The Data Mining and Knowledge Discovery
Handbook, vol. 6, pp. 165–192, 2005.

79

[38] S. Gu, “Identifying network connection: Benign vs. dos attack - a comparative analysis
of binary classifiers,” Applied and Computational Engineering, vol. 34, pp. 147–152, 01
2024.

[39] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. New York: Springer Series in Statistics, 2nd ed.,
2009.

[40] M. Shapi, N. A. Ramli, and L. Awalin, “Energy consumption prediction by using ma-
chine learning for smart building: Case study in malaysia,” Developments in the Built
Environment, vol. 5, p. 100037, 2021.

[41] R. I. Rasel, N. Sultana, S. Akther, and A. Haroon, “Predicting electric energy use of a
low energy,” 2019.

[42] G. Toderean, I. Brânduşoiu, and H. Beleiu, “Methods for churn prediction in the pre-paid
mobile telecommunications industry,” in 2016 International Conference on Communi-
cations (COMM), pp. 97–100, 2016.

[43] B. Larivière and D. V. d. Poel, “Predicting customer retention and profitability by using
random forests and regression forests techniques,” Expert Systems with Applications,
vol. 29, no. 2, pp. 472–484, 2005.

[44] P. Bhosale, G. Jadhav, A. Dhane, and N. Pise, “A dynamic churn prediction model using
machine learning approach,” Expert Systems with Applications, vol. 10, Sept. 2021.

[45] R. R, V. G, P. Jeyanthi, S. Revathy, L. Gladance, and V. Mary, “Prediction of electricity
bill using supervised machine learning technique,” in International Conference on Recent
Advances in Engineering, Technology and Science, pp. 1232–1236, Apr. 2022.

[46] C. R. Karthik, Raghunandan, B. A. Rao, and N. V. S. Reddy, “Forecasting variance of
niftyit index with rnn and dnn,” Journal of Physics: Conference Series, 2022.

[47] X. Liu and J. Li, “Using support vector machine for online purchase prediction,” in
International Conference on Electronic Commerce and Contemporary Economic Devel-
opment, pp. 1–6, 2016.

[48] M. Zeng, H. Cao, M. Chen, and Y. Li, “User behaviour modeling, recommendations,
and purchase prediction during shopping festivals,” June 2019.

80

[49] Y. Zhang, A. Wang, and W. Hu, “Deep learning-based consumer behavior analysis
and application research,” Wireless Communications and Mobile Computing, vol. 2022,
p. Article ID 9147812, Apr. 2022.

[50] E. Samunderu and M. Farrugia, “Predicting customer purpose of travel in a low-cost
travel environment—a machine learning approach,” Machine Learning with Applica-
tions, vol. 9, no. 2666-8270, p. 100379, 2022.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[52] C. Bhatt, “Data visualization and visual data mining,” CSI Communications, pp. 12–13,
2014.

[53] T. Sandle, “Digital data #4: Looking for data trends and patterns with visualization,”
vol. 3, pp. 1–5, 07 2022.

[54] B. Silverman, Density Estimation for Statistics and Data Analysis. Chapman and
Hall/CRC.

[55] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source Soft-
ware, vol. 6, p. 3021, 2021.

[56] R. K. Kumar and R. Chadrasekaran, “Attribute correction-data cleaning using associa-
tion rule and clustering methods,” International Journal of Data Mining & Knowledge
Management Process, vol. 1, pp. 22–32, 2011.

[57] I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, Feature Extraction. Springer Berlin
Heidelberg, 2006.

[58] T. van der Ploeg, P. C. Austin, and E. W. Steyerberg, “Modern modelling techniques are
data hungry: a simulation study for predicting dichotomous endpoints,” BMC Medical
Research Methodology, vol. 14, p. 137, 2014.

81

